
~ ADII FRE COPY

hV'-

InnI

JAN 8 9 ~I

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

________nwft 89 1 17 159

AFIT/GOR/MA/88D-I

INFLUENCE DIAGRAMS:
AUTOMATED ANALYSIS WITH

DYNAMIC PROGRAMMING

THESIS

Christopher Thomas Baron
Captain, USAF

AFIT/GOR/MA/88D-1

DTIC
E.-ECTE

JAN 18 rs ti m

%H

Approved for public release; distribution unlimited

AFIT/GOR/MA/88D-1

INFLUENCE DIAGRAMS: AUTOMATED ANALYSIS WITH

DYNAMIC PROGRAMMING

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Christopher Thomas Baron, B.S.

Captain, USAF

December 1988

Approved for public rclease; distribution unlimited

w

Preface

I would like to thank my thesis advisor Captain Joseph Tatman for his enthu-

siasm and confidence in me and in the software package called AFids. Without his

help and encouragement the software would certainly have been less in all ways. I

would also like to thank my thesis reader Major Bruce Morlan for his many helpful

suggestions.

To my wife Lori I can only say 'It's over.' and thank you for making the whole

AFIT program much easier than it could have been. Your love and encouragement

kept me going in the tough times. To my boys Michael, Patrick, and Danny, thank

you for putting up with the use of 'your' computer for boring stuff like thesis writing,

and the absence of your father during those many long nights I spent hunched over

a computer screen or doing homework.

I would also like to thank Borland International for Turbo Pascal. Without this

wonderful programming environment I doubt if AFids would have half the capability

it has.

My sincere hope for the AFids software is that it will be used. For students

and faculty to use the fruits of my labor for actual problem solving would provide

for me much satisfaction.

Christopher Thomas Baron

Ac tLcoession For
NTIS GRA&I

0 DTIC TAB 0
PE Unatounced
6

Distribuut on/
Aval].bllity Codos

ii ,Avail. and/or

Dtat Special

Table of Contents

Page

Preface 1i

Table of Contents ii

List of Figures vi

Abstract vii

I. Introduction 1

1.1 General Background 1

1.2 Specific Research Goals 5

1.3 Review of Influence Diagram Literature 6

1.4 Literature Review Conclusions 8

1.5 Review of Influence Diagram Software 8

II. Influence Diagrams and Dynamic Programming 10

2.1 Basic Influence Diagram Concepts and Operations 10

2.2 Basic Influence Diagram Solution Algorithm 14

2.3 Deterministic Node Processing 15

2.4 Additions Needed for Dynamic Programming 16

III. The AFIT Influence Diagram System (AFids) 22

3.1 System Requirements and Goals 22

3.2 Implementation 23

3.3 User Interface Design 25

3.4 Program Philosophy and Data Structures 29

3.5 AFids and Dynamic Programming 31

3.6 AFids Unique Features 33

nli

Page

IV. Applications...................................... 37

4.1 Application #1: Aircraft Maintenance 37

4.2 Application #2: Procurement vs R&D 41

4.3 Application Observations 46

V. Areas for Further Research and Conclusions 48

5.1 Areas for Further Research. 48

5.2 Conclusions 50

Appendix A. AFids Users Manual. 52

A. 1 Introduction. 52

A.2 Getting Started. 53

A.3 System Command Structure. 53

A.4 Using Dynamic Programming. 60

A.5 Menu Commands 61

A.5.1 Main Menu. 61

A.5.2 Create/Edit Menu 62

A.15.3 Add Node Menu 64

A.5.4 Edit Node Menu 65

A.5.5 Group Operations Menu 67

A.5.6 Solve Menu. 68

A.5.7 Solve Operations Menu. 69

A.5.8 Other Solve Operations Menu 73

A.5.9 Files Menu 74

A.5.10 Output Menu 76

A.5.11 Graph View Menu 77

A.6 Function Evaluation Subsystem. 78

A.6.1 Function Format 79

iv

Page

A.6.2 Value Rounding a 80

A.6.3 Outcome Limiting 81

A.6.4 Available Functions 81

Appendix B. AFids Program Data Structures 86

Bibliography 89

Vita .. 90

v

List of Figures

Figure Page

1. Types of Nodes 2

2. An Example Influence Diagram 4

3. Influence Diagram Node Types and Their Data Elements 11

4. Influence Diagram with Separable Value Function 18

5. Influence Diagram with Variable Number of Stages 20

6. Typical AFids Text Display Screen 26

7. Typical AFids Graphics Display Screen 28

8. A Linked List Data Structure 30

9. The AFids Data Structure For An Influence Diagram Node 32

10. Functional Combination in Deterministic Nodes 35

11. Influence Diagram for the Aircraft maintenance Problem 38

12. Influence Diagram for the Aircraft Maintenance Problem with Subvalue

Nodes Added 40

13. A Stage in the Artillery Shell Problem 42

14. Influence Diagram for the Procurement Problem 43

15. AFids Text Screen Display 54

16. An AFids Graphic Display 58

17. The Zoomed AFids Display 59

vi

AFIT/GOR/MA/88D- 1

Abstract

The major goals of this thesis" were to develop a user friendly software

package for processing influence diagrams, and to implement in software the exten-

sions necessary for dynamic programming without special action or knowledge on

the part of the user. The final goal was to demonstrate the efficiency of the dynamic

programming techniques by applying them to several example problems.

A software package, AFids (AFIT influence diagram system) was developed.

The system is capable of performance equivalent to the current state of the art

in commercial influence diagram software. AFids incorporates the basic influence

diagram operations, the separable value function extensions, and an algorithm to

automatically solve any properly formed influence diagram. Separation of the value

function is automatic and requires no action or special knowledge on the part of the

* * user beyond representing the value function explicitly as a sum or product. The

software uses menus, data entry screens, and graphics to provide an effective and

friendly user interface. Several extensibns to influence diagram theory were imple-

mented in the AFids package including the concepts of value rounding and outcome

limiting to control the combinatorial explosion encountered when processing chains

of deterministic nodes. The system is cost free and available in either source or

compiled form for government users. There are no restrictions on use or distribution

except for commercial use. The software runs on MS-DOS compatible microcom-

puters and was programmed in Turbo Pascal.) A users manual, and a description of

the AFids data structures are provided for future users and researchers.

Two application examples are presented, demonstrating both the efficiency

of the dynamic programming features and the limitations of influence diagrams in

modeling problems with significant functional relations.

AFids provides a solid capability for processing influence diagrams throughout

vii

the decision analysis cycle from formulation to solution. Inclusion of the separable

value function and deterministic processing node functions represent advancements

in influence diagram software and allow previously computationally intractable prob-

lems to be solved via influence diagrams. Finally, AFids will become the standard

influence diagram software for the decision analysis curriculum at AFIT.

viii

,-No INFLUENCE DIAGRAMS: AUTOMATED ANALYSIS WITH

DYNAMIC PROGRAMMING

I. Introduction

1.1 General Background

Influence diagrams are a -eccntly developed graphical modeling tool for repre-

senting both the conceptual elements and the mathematical structure of a problem.

An influence diagram may be used as a formal problem description suitable for man-

ual or computer based solution and/or as an informal conceptual aid useful in helping

a decision maker visualize the elements of the problem and their relationships and

dependencies.

Influence diagrams were originally developed for decision analysis applications,

helping decision makers choose the best alternative in problems with significant un-

certainty or subjective factors. Originally conceived as an alternative to decision

trees, other areas of application such as stochastic control, classical statistics, ar-

tificial intelligence, and other areas within operations research have emerged [1:1].

The dual nature of the problem representation using influence diagrams has some

significant advantages.

* Problem variables are concisely and unambiguously represented in the graph

as are the interrelationships between them.

0 The full mathematical description of the problem is contained within the data

portion of the diagram.

* The diagram may be easily stored and manipulated by computer allowing rapid

solution and convenient 'what-if' query capability.

1

QChance Node

DDecision Node

Deterministic Node

OSubvalue / Value Node

Figure 1. Types of Nodes

The format of an influence diagram is an acyclic graph, with nodes corre-

sponding to the variables in the problem, and arcs connecting the nodes to represent

probabilistic dependence or information flow. The nodes, of which there are several

kinds, each have an associated frame of data describing the nature, outcomes, and

for the chance nodes, the probability distribution, of the variable they represent.

Arcs between nodes represent the relationships between the nodes and hence the

variables they represent in the model [9:10]. The types of node included in basic

influence diagrams are (see Figure 1):

Chance Node The chance node represents a random variable or event with some

probability d'stribution describing the likelihood of its various outcomes. An

arc between two chance nodes indicates probabilistic dependence. Currently

available software implementations only allow discreet probability distributions

for chance nodes.

Decision Node The decision node represents a choice among several alternatives.

2

....... ----

One of the alternatives to be chosen will maximize the expected value of the

model. An arc into a decision node indicates the outcome of the node at the

head of the arc is known at the time the decision is made.

Deterministic Node The variable represented by a deterministic node has its

value determined by a function of the values of the nodes preceding it in the

diagram.

Value Node The value node is a special case of the deterministic node and rep-

resents the objective function of the model. Influence diagram models are

generally formulated so that maximizing the value node outcome maximizes

the variable of interest in the model. A typical value function might represent

profit, or number of aircraft lost (the modeler could maximize the negative of

aircraft lost to get a minimum number).

All of the chance node probability distributions taken together represent the joint

m probability distribution of the random variables in the problem.

Nodes may be eliminated from the diagram by performing certain value pre-

serving transformations. The transformations such as, decision maximization, con-

ditional expectation, and algebraic functional combination allow one or more nodes

to be removed from the diagram while preserving the expected value and optimal

decision policies of the model. This process of removing nodes reveals the optimum

decision policy leading to the maximum expected value of the problem while taking

into account the probabilities of the outcomes of the chance nodes [6:879]. Figure 2

shows an example diagram representing the classic text-book problem modeling an

oil wildcatter's decision of whether or not to drill for oil. The implications of the

arcs between the different types of nodes will be discussed further in Chapter 2.

A major shortcoming of the traditional influence diagram is that the separable

nature, if any, of the value function cannot be exploited [7:3]. A large number of the

decisions that must be made both in theoretical and practical situations resemble

3

Drl
Toa Net "

Figure 2. An Example Influence Diagram

Markov decision processes [8:11]. The characteristic properties of a Markov decision

process are: the separability of the objective function into stages, and the Markovian

assumption that each stage may be optimized independently of other stages preced-

ing the current stage in time. The justification for using dynamic programming in

influence diagrams lies in the enormous computational efficiency that solution via

dynamic programming can provide. For example, in a problem of finding the short-

est path between two points with 20 intermediate points, the brute iorce method of

explicit enumeration of all possible routes would require more than 3 x 106 additions

and 184.000 comparisons to find the optimum answer, while dynamic programming

can solve the problem with only 220 additions and 100 comparisons [2:9]. Obviously

a whole new class of problems which were formerly computationally intractable for

influence diagrams become solvable when a dynamic programming capability is im-

plemented.

Dynamic Programming is an optimization procedure that is computationallv

efficient when applied to problems having a sequence of related decisions or stages

4

[2:1]. Some examples include yearly budget allocations, program scheduling, and
minimum path planning. The goal of dynamic programming is then, to select the

sequence of decisions which yield the maximum expected value for the problem.

1.2 Specific Research Goals

The three major goals of this thesis research were:

1. To develop user friendly software for processing influence diagrams employing

a graphical user interface and menu driven command structure.

The current influence diagram software used at AFIT, PerForma [1], was writ-

ten in an interpreted dialect of the LISP programming language. It provides

only a rudimentary user interface, consisting of a set of LISP functions called

from the interpreter command line, requiring the user to enter confusing LISP

syntax commands. No graphical representation of the diagram is provided and

diagram processing is extremely slow due to the interpreted nature of the lan-

guage. No method for automatically solving influence diagrams was included

in PerForma, requiring the user to manually determine the steps needed to

process the diagram.

The goal then, was to develop a software package employing a graphical in-

terface to represent the diagram visually while providing fast processing of

the diagram with a user friendly command structure. Ideally the software

should be written in a compiled, high level procedural language to combine

processing speed with ease of modification. The software should implement

the automatic diagram solving algorithm allowing problems to be solved with-

out requiring the user to concentrate on the individual steps needed to reach

the solution. Finally, the software should be of such quality that it could be

delivered to government customers sponsoring research along with a model of

their problem suitable for use at the customers location, i.e. it must be more

than just a research tool.

5

2. The software, incorporating the basic influence diagram operations, should be

extended to include the additional operations and node types defined in Tat-

man [8]. The primary concept in these extensions is to allow the separation of

the value or objective function of the problem into parts or stages which may

be solved separately. This separation can significantly reduce the dimension-

ality of a problem and is most commonly seen in dynamic programming. The

software should ideally recognize a separable value function and perform these

operations without special effort or knowledge on the part of the user. These

concepts are discussed in detail in Chapter 2. A modification to the standard

solution algorithm is also required.

3. It is desirable to demonstrate the efficiency of the software and its extensions

by applying them to several example problems.

1.3 Review of Influence Diagram Literature

The concept of influence diagrams was originated by Merkhofer, Miller, Howard,

Matheson and Rice in about 1976 [6:871]. One of the first attempts to automate the

transition from influence diagram formulation to analysis was by Howard and Math-

eson in 1981 [3]. While only chance and decision nodes were included in Howard and

Matheson's conceptualization, most of the other important features of today's in-

fluence diagram language were considered including: arcs representing probabilistic

and informational influences, the prohibition on loops in the diagram, the impor-

tance of the 'no-forgetting' arcs which must be added to ensure that outcomes from

previous decisions and chance outcomes are available to succeeding nodes, and the

advantages of the influence diagram versus decision tree representations [3:735-739].

Owen extended the rather theoretical applications views of Howard & Math-

eson to provide guidelines on the practical use of influence diagrams in formulating

real-world decision problems and capturing the decision makers knowledge of the

problem and then using that knowledge as an intimate part of the model construc-

6

tion process [5:766-777]. Owen also realized that the very form of the influence

diagram helped to produce correctly formed and balanced models [5:768]. An area

mentioned by Owen which has not received further attention in the literature is that

of a mathematical characterization of the strength of the influence between variables.

One of the truly seminal works in the influence diagram field was written by

Shachter in 1984 [6]. This one short article presented the rigorous mathematical basis

for all of the node types and diagram operations as well as an algorithm guaranteed

to solve a properly formed diagram [6:879]. It is interesting to contrast the change

in tone given in the conclusions of the Howard and Matheson paper of 1981 with

that of Shachter in 1984. Howard and Matheson are presenting a new idea about

how to represent decision problems: "We have shown how influence diagrams can

be used to model the primary decision problem . .. [3:762]. Shachter, on the other

hand, only three years later, is formally defining the operations to be used in real

world applications: "The influence diagram has become a useful tool for analysts in

communicating with decision makers and experts ... " [6:882].

The Phd dissertation of Tatman [8], one of Shachter's students, is the final

step in influence diagram modeling to date (at least in the direction of the author's

thesis research) [8]. This work lays the foundation for the inclusion of dynamic pro-

gramming in influence diagrams. [8:148]. The important areas recognized are: the

limitations of restricting separable value functions to a single node, the need for an

additional node type (the subvalue node) to efficiently handle dynamic programming

processes, the requirement that the solving system recognize a separable value func-

tion and be able to represent that function utilizing the new node type, and that a

modification to the solving algorithm was needed [8:16]. The conclusion to the dis-

sertation clearly leads to the author's thesis research with the following statement:

"The influence diagram with subvalue nodes is an effective tool for formulating and

analyzing decision problems with separable value functions ... " [8:147]

7

1.4 Literature Review Conclusions

Influence diagrams have progressed rapidly from a mathematical novelty in

1981 to a well understood and widely recognized problem modeling/solution tech-

nique in 1988. The early work of Howard, Matheson, and Shachter provide a solid

foundation upon which the theory and practical applications of influence diagrams

are built. Several of Shachter's students have continued the influence diagram evo-

lution by extending influence diagram solution techniques and developing aids and

methods for utilizing the influence diagram throughout the entire problem solving

process.

Dynamic programming has long been recognized to convey significant compu-

tational efficiency on certain types of problems and the work of Tatman brings the

promise of that efficiency to influence diagrams.

1.5 Review of Influence Diagram Software

Currently there are two software packages for processing influence diagrams

(besides the author's) available. They are DAVID, a commercial package distributed

by Duke University and written by Ross Shachter, and PerForma which is owned by

AFIT and was written by Thomas Burwell and Joseph Tatman.

DAVID is a state of the art influence diagram/decision analysis package for the

Apple Computer Macintosh series of microcomputers. The software has the most

extensive analysis features currently available, including [1:8]:

1. Graphical display of the diagram and a graphical user interface for manipulat-

ing both the appearance of the graph and the solving operations.

2. Sensitivity analysis for uncertainties, risk tolerance, and the value of informa-

tion.

3. Primitive dynamic programming functions.

4. Value lotteries for policy comparison.

8

5. An option for a function to derive discreet probability distributions.

6. Graphical display of probability distributions and sensitivity plots.

DAVID does have some serious limitations however, first, DAVID requires at least one

mega-byte of RAM memory to execute (and seems to need 2 mega-bytes to process

other than trivial problems); this excludes the vast majority of Macintosh computers

from its use, second, program execution is slow due to the program being written in

a compiled version of LISP, third, the availability of Macintosh computers in most

government agencies is severely limited, and fourth, no source code is provided for

possible modification nor is DAVID freely distributable to customers.

PerForma was written by a former AFIT student Thomas Burwell [1]. The

program is written in interpreted LISP code and as might be expected executes

very slowly. PerForma includes the basic node removal and diagram manipulation

operations implemented as a set of LISP functions. Since AFIT owns the source code

PerForma may be freely distributed to customers and modified as needed. However,

no user interface is provided and no graphical display of the diagram is available.

Shachter's solving algorithm is not implemented nor are any of the sensitivity analysis

and value modeling features of DAVID. PerForma is basically a research tool suitable

for small problems and class homework assignments.

There is then, a definite need for an influence diagram software package to fill

the gap between DAVID, which has many features but is expensive and commercially

restricted, and PerForma, which has primitive features, is cost free and is unrestricted

in use and modification. The software developed in conjunction with this thesis

research fills this gap. It is discussed in detail in Chapter 3.

9

II. Influence Diagrams and Dynamic Programming

This section will discuss the significance of the graph and data structures to

the influence diagram, and the fundamental influence diagram reduction operations.

As previously stated, an influence diagram is a two level hierarchical representation

of a problem, its component factors or variables, and their relationships.

2.1 Basic Influence Diagram Concepts and Operations

The top level (the graph) visually represents the problem such that each object

(node or arc) in the graph maps to an object or relationship in the second or data

level. Thus, an influence diagram is mathematically precise in its representation

and may be directly manipulated via value preserving reduction operations. Each

operation corresponds directly with an operation in classical probability calculus.

These operations will reveal the optimum decision policy for decision nodes and thea. expected value of the value node. Figure 3 shows the basic node types along with

the unique data structures that each contains. An algorithm has been developed

and theoretically proven able to reduce any well formed influence diagram down to a

single node (the value node) which has as its value the expected value of the model

[6:8791.

Arcs in the diagram also have specific meanings. Arcs leaving a node (the

predecessor node) and entering a chance node (the successor node) are called con-

ditioning arcs and may represent conditional dependence of the successor node's

probability distribution on the outcomes of the predecessor node. Conditional de-

pendence is not guaranteed by the presence of an arc into a chance node. However,

arcs into chance nodes where no dependence exists serve no useful purpose in the

diagram, they increase the computational size of the solution, and can lead to false

perceptions of dependence on the part of decision makers and decision analysts and

thus are to be avoided. Lack of an arc into a chance node definitely indicates prob-

10

Chance Node

Outcomes
Probability Distribution

DDecision Node

Outcomes
Optimal Decision Policy

(Deterministic Node

Function
Outcome Table

Subvalue / Value Node

Function
Outcome Table

Figure 3. Influence Diagram Node Types and Their Data Elements

11

abilistic independence between the two nodes. For example, if there is an arc from

some node y to a chance node x then the probability of a given outcome of x oc-

curring probably depends on the outcome of node y. If however, there is not an arc

between x and y then the outcome probabilities of x do not depend on the outcome

of y.

An arc entering a decision node indicates information known at the time the

decision represented by the node is made. For example, if a stock broker is to

make a decision whether to buy or sell stock on a given day he knows the closing

price for the stock on the previous day. In an influence diagram this information

flow would be depicted as an arc from chance node yesterday-close to decision node

buy-or-sell?. A logical assumption is that the decision maker does not forget any

decision made previously nor does he forget any information available at the time

the previous decision was made. This 'no forgetting' is represented by arcs from

the previous decision nodes to successor decision nodes either direct or indirect. 'No

forgetting' arcs are also added between a previous decision nodes direct predecessors

and successor decision nodes. Often these arcs are left out when drawing the diagram

but they must be inserted either explicitly or by the computer before solving can

begin.

Since a deterministic node's outcome values are determined by the outcome

values of its predecessors, an arc into a deterministic node indicates information

dependence. The outcomes of all a deterministic node's predecessors must be defined

in order for the deterministic node's outcomes to be calculated. Arcs into a value

node have the same meaning as for a deterministic node since the former is simply

a special case of the later.

In order to determine the expected value of an influence diagram model, all

nodes except the value node must be removed. The value node will then contain the

expected value for the model and the process of removing the decision nodes will

reveal the decision policy which will maximize the problem expected value. There

12

are four basic node removal operations required to solve an influence diagram. They

are:

Barren Node Removal A barren node is defined as any node (except the value

node) which has no successors. A barren node may simply be removed from

the diagram without affecting the problem outcome because the fact that it

has no successors implies that it has no influence either directly or indirectly

on the value node. In order to solve a diagram any barren nodes created must

be removed after each reduction operation.

Expectation If a chance node directly precedes the value node and nothing else

in a properly formed diagram it may be removed by conditional expectation.

Expectation removes a node by summing the product of probabilities for the

chance node's outcomes with the value node's value resulting from each out-

come. A side effect is that all direct predecessors of the removed node are now

direct predecessors of the value node.

Maximization If a decision node is a direct predecessor of the value node and all

other direct predecessors of the value node are also informational predecessors

of the decision node then the decision node may be removed by maximizing the

expected value of the value function conditioned on the other predecessors of

the value node. A side effect of maximization is that some of the informational

predecessors of the decision node may become barren nodes since the value

node does not inherit any new predecessors from this reduction.

Arc Reversal If an arc exists between two chance nodes and there is no other

path between them then the arc may be reversed by applying Bayes rule to

the two node's probability distributions. A side effect is that the two nodes

involved inherit each others predecessors, possibly creating new arcs in the

diagram. This operation is often needed when solving influence diagrams to

allow a chance node to be removed by expectation. Bayes rule is also useful

13

in gaining insight into conditional probabilities. For example, a woman thinks

she has a 50/50 chance of being pregnant. A pregnancy test is known to give

a positive result with probability 0.99 if the woman is pregnant(Priest =

pos-preg = true), and to give a negative result with probability 0.90 if she is

not (Priest = neg-preg = false). The woman however, would like to know

the probability that she is pregnant given the test result is positive (Prpreg =

true-test = pos). This probability can be calculated by performing Bayes rule

on the probability distribution of the test results and of her being pregnant as

t_ 0.908.

2.2 Basic Influence Diagram Solution Algorithm

This section describes briefly the general influence diagram solution algorithm

as defined by Shachter [6:879]. As Shachter states:

This section combines the basic transformations developed so far into
a procedure that can evaluate any oriented [has a value node], regular
[contains no cycles] influence diagram. The procedure will remove nodes
from the diagram until only the value node remains. At that point, it
has determined all of the optimal policies and computed the maximal
expected utility [value].

The algorithm as given by Shachter is as follows:

DEFINE PROCEDURE ID-EVAL AS

BEGIN

check for oriented, regular diagram

add "no forgetting" arcs

eliminate all barren nodes

WHILE predecessors of the value node - none DO

BEGIN

IF a chance node may be removed by expectation

THEN remove the chance node

14

ELSE IF a decision node may be removed by maximization

THEN BEGIN

remove the decision node

remove any created barren nodes

END

ELSE BEGIN

find a chance node which has the value node as a successor and

only other chance nodes as its remaining successors

WHILE chance successors exist DO

BEGIN

find a successor with no other path to the node

reverse the arc between them

END

remove chance the chance node by expectation

*END

END

END

Since the algorithm will remove at least one node at every step the algorithm will

always terminate.

2.3 Deterministic Node Processing

One important class of nodes is not mentioned in the above algorithm. Deter-

ministic nodes were consi.-'red by Shachter to be only a special kind of chance node.

This reasoning follows from the fact that a deterministic node may be transformed

into a chance node by the following method.

15

1. Calculate all of the possible outcomes for the deterministic node. The number

of outcomes will be:
alL preds

fl Outcomes(pred)i

Note, this number grows exponentially with the number of predecessors.

2. Create a probability array such that, for a given combination of predecessors,

the probability of the deterministic node outcome is equal to 1.0 for the de-

terministic function value the combination produced and 0.0 for all the others.

The maximum size of the probability array will then be: Number of unique

outcomes x the number of predecessor combinations.

3. Change the label on the node from deterministic to chance.

Obviously, the probability array size grows as the square of the previous exponen-

tially growing outcome space. For all but trivial problems this conversion can cause

serious memory limit problems especially in Markov decision process models where a

5 chain of deterministic nodes can require astronomical amounts of storage space when

converted to chance nodes. The software packaged developed for this thesis research

includes several methods of limiting the size problem associated with deterministic

node processing (See Chapter 3).

2.4 Additions Needed for Dynamic Programming

We have seen that solving an influence diagram involves removing nodes through

a series of expectations and maximizations which preserve the maximum expected

value of the problem and reveal the optimal decision policies. In traditional dynamic

programming, the computational efficiencies come from the fact that each part or

stage of a problem can be separated out and solved as a sub-problem independently

from the other stages. When the individual stage solutions are later combined, the

solution reached is the optimal solution for the problem as a whole. To gain the

same advantages for influence diagram solution, the value function must be separa-

16

ble into parts and the expectation and maximization operators when applied to the

separated value function components must still reveal the maximum expected value

and optimal decision policies. While other types of functions may be separable, for

the purposes of this research, a separable function was defined to be either a sum or

product.

Tatman provides a proof, not duplicated here, that the maximization and

expectation operators, when applied to separated value functions, do indeed reach

the optimal solution [8:32- 50]. In order to represent the separated components

of the value function a new node type was introduced: the subvalue node [8:26].

Figure 4 shows an influence diagram before and after separation of the value node

into subvalue nodes. The numbers in parentheses near each node are the number of

outcomes that node has. Notice, how even for this simple problem separating the

value function reduces the size and complexity of the problem.

To incorporate these additions to the influence diagram language a new solving

algorithm is needed. Like the previous algorithm it will always reduce an influence

diagram to the original value node thus producing the maximum expected value and

optimal decision policies. The separable value function influence diagram solving

algorithm as given in Tatman and Shachter [7] is:

DEFINE PROCEDURE SEP-ID-EVAL AS

BEGIN

check for oriented, regular diagram

add "no forgetting" arcs

eliminate all barren nodes

split the value node into subvalue nodes if its function is

separable and continue to split the subvalue nodes until a

non-separable function is assigned.

WHILE predecessors of the value node $ none DO

17

~(3)

chace2decision2 (3)

chancel(3

chace decision2 (3)

Figur 4.Influe Diga ihSepaabic VaueFu7t)

vau (3

BEGIN

IF any set of subvalue nodes predecessors are a subset of the

predecessors of another subvalue node

THEN combine the outcomes of the subset node's outcomes into the superset

node's outcomes according the the function of the successor node.

The subset subvalue nodes are eliminated.

ELSE IF a decision node may be removed by maximization

THEN BEGIN

remove the decision node

remove any created barren nodes

END

ELSE IF a chance node may be removed by expectation

THEN remove the node by expectation

ELSE BEGIN

I* find a chance node which has the value node as a successor and

only other chance nodes as its remaining successors

WHILE chance successors exist DO

BEGIN

find a successor with no other path to the node

reverse the arc between them

END

remove chance the chance node by expectation

END

END

END

Note, if the value function is not separable this algorithm will perform as the original

to solve the diagram.

19

000

D()D (1) D (2)

VALUE VALUE= C(0*D(i)

Figure 5. Influence Diagram with Variable Number of Stages

Now let us look a little more closely at exactly how much the subvalue node

and a separable value function will save us in both storage space and computational

effort. Figure 5 shows a typical Markov decision process with n stages consisting

of a chance and a decision node with C, and D outcomes respectively. For the

unseparated value function the size of the problem will be:

n n-

-I CiD, +E C + D,
i=1 i=1

So for a problem with five stages and C, = 3 and D, = 3 the storage requirement for

the just the node outcomes will be 59079 storage units (typically real numbers). The

space requiied to store the probability arrays for the chance nodes is not included

because it is not effected by the value node structure. For the separated value

function there will be five subvalue nodes each with one chance and one decision

20

predecessor. The size of the outcome space for the problem formulated this way is:

F ~~ + EC,+Di +1
'=1 1=1

For the example above the storage space required will be only 76 storage units or

= 0.1% of the above. The number of computations required to reach the solution is

similarly reduced for the separated over the non-separated case.

This chapter has defined the influence diagram basics and the additions needed

to perform dynamic programming like operations on separable value functions. The

next chapter will discuss the implementation of these procedures in software.

21

III. The AFIT Influence Diagram System (AFids)

This chapter describes the software package developed in conjunction with this

thesis research. The AFids software addresses the shortcomings of the other influence

diagram processing software available and provides many influence diagram features

in a user friendly, fast, interactive package. The software was developed to meet

several needs and to provide an accessible future research vehicle.

3.1 System Requirements and Goals

The major goals for AFids were:

9 The primary goal of any interactive software package should be user accessibil-

ity. The user should be able to easily and naturally interact with the software

to accomplish his tasks. Also important is the responsiveness of the system.

Rapid response to user commands is critical to user productivity. With a sys-

tem that responds rapidly it is easy for the user to maintain his concentration

and he will be encouraged to experiment and ask the 'what if' questions which

lead to increased insight. All these factors fall with in the over used term 'user

friendly'. Thus, the attributes of user-friendliness were a major concern dur-

ing the development of the software and were the driver behind several design

choices.

9 Computational efficiency was another major driver in the software development

cycle. Speed of computation was required for the system to be usable for more

than trivial problems. Real world problems are large. To handle them, the

software must be able to process rapidly enough that real problems can be

solved in a reasonable amount of time.

* As a research tool it was important that AFIT have complete control of the

program from source code to unlimited distribution and modification rights.

22

AFids represents a starting point upon which later advances may be build.

AFIT often provides thesis students to work on problems for the Air Force and

other government agencies. Thus, the software should be available for AFIT to

develop models with, modify as needed, and then deliver to the customer for

use at their site. Alternatively the entire source code could be made available

to a customer for modification by them.

e In order for the software to applicable to other research or thesis projects it

should be written in a common high level programming language. The use of

a modular program design would allow sections of the code to applied to other

projects easily. Further, a high level language would minimize the problems

with porting the software to systems other than the development system.

3.2 Implementation

This section will discuss some of the design decisions made in the development

process, hardware and software used for development, and the requirements to run

the AFids software package.

The hardware used for development was a Zenith Z-248 microcomputer equ-

ipped with a 20 Mb fixed disk and an EGA color graphics adapter and monitor.

Besides being commonly available to government users the MS-DOS (like the Z-248)

type of microcomputer is the type most commonly owned by AFIT students as well.

Although other, superior, microcomputer systems were available, the decision to

develop the software on the Z-248 was driven by the need for governmental customers

and later generations of students to have easy access to the compiled program and

source code.

The programming language used to develop the AFids package was Turbo

Pascal 4.0 from Borland International. Turbo Pascal is a low cost high performance

dialect of the standard Pascal high level programming language. It is very common

23

on MS-DOS microcomputers and is taught in many colleges and schools including

AFIT. Turbo Pascal was chosen for the development language for several reasons:

1. The language includes a highly productive integrated development environment

including editor, compiler, linker, and utilities. The language is easy to learn

and produces fast, compact code.

2. Programs produced with Turbo Pascal are completely owned by the author,

no royalties or licenses are involved.

3. Turbo Pascal produces compiled programs that are 'stand alone', requiring no

support routines or libraries to run.

4. A set of graphics routines supporting all of the common graphic display adapt-

ers for the MS-DOS computers is included standard with the package, easing

graphic programming work.

5. Turbo Pascal is a compiled high level language and meets the requirements for

an interactive software package as discussed in the previous section.

6. Turbo Pascal is perhaps the most popular compiled programming language

available for MS-DOS computers. Thus, any future researchers desiring to

modify AFids will have the highest probability of being familiar with it, facil-

itating future work with the AFids source code.

While Turbo Pascal is not standard pascal, converting the AFids software

package to other implementations of Pascal or Modula-2 (a language whose 'module'

structures are actually closer to the Turbo Pascal 'unit' structures used in AFids than

standard Pascal structures) will be eased by the modular nature of Turbo Pascal.

The majority of the mathematical routines are standard pascal and only the user

interface and display routines would need to be rewritten.

The program was written utilizing Turbo Pascal's 'unit' structure extensively.

With this method of organization, procedures and functions can be grouped by func-

tional area and level of operation. For example, all of the high level node functions

24

-i

such as Reverse Arc and Mazimization are in a unit while lower level operations such

as draw graph and menu- choice are in other units. This structure will allow future

researchers to extract the program elements from the AFids system at whatever

level is needed. Similarly, all of the system dependent routines are grouped in a few

units, the graphics display routines are a good example. A programmer converting

AFids to run on another computer can simply replace the graphics and text display

routines with ones that are functionally similar and the program should run on the

new machine, the rest of the code need not be changed.

The final version of AFids requires an MS-DOS computer running MS-DOS

version 2.0 or higher, at least 256K of RAM, at least 1 floppy disk drive, and an

EGA color graphics adapter and monitor. Converting the program to other graphic

adapters would be very easy as the graphics routines in Turbo Pascal are device

independent but several variables in the AFids program assume an EGA size screen

(650X350 pixels) and at least 4 colors. The program code occupies about 200K of

memory leaving about 320K free for storage of nodes and their related data struc-

tures(with the standard 640K configuration). Assuming average size outcome spaces

and probability arrays, 320K is enough for a several hundred nodes. A limitation of

Turbo Pascal, that data objects occupy < 65521 bytes of memory 110:3371, limits the

number of outcomes to about 5000 per node and limits probability arrays to about

11,000 elements. If the numeric coprocessor version of AFids is used these figures are

reduced by about 25% because the real numbers the coprocessor uses require eight

bytes of storage each as compared to six bytes for the non- coprocessor version.

3.3 User Interface Design

The user interface is always the critical link between the conceptually minded

human operator and the extremely literal outlook of the computer. Rather than

invent a whole user interface concept for AFids, the researcher borrowed several

tried and true user interface systems from other popular microcomputer software.

25

Create/Edit Chance Node Probab:lties

Chance Node: Chancel
Given:

Decision2=Low

Outcome Probability Outcome Probability
resultl 0.2500000
result2 0.250O000
result3 0.2500000
result-, 0.2500003

Ed:t Node Yen*. 112/88 - Is:. -

Outcomes ?robs Function Build Table Quit
Chn3ge ps- b lity array f:r chance nc~e

Figure 6. Typical AFids Text Display Screen

26

The primary user interaction with the program is through the keyboard. Figure 6

shows a typical display screen a user might see while using AFids. At the bottom of

the screen are the menu lines the menu title, menu choices, and the explanation for

the currently high-lighted menu choice. The user can navigate through the menus

by either choosing the first letter of the menu choice or by high-lighting the menu

choice and hitting the enter-key. This system is popular with programs such as Lotus

123. Moving through the menus with a system such as this provides both speed for

the experienced user, who can change menus as quickly as he can hit the keys for

the first letters of the menu choices, and explanation for the novice, who can read

the mnemonic command names and get a further explanation by high-lighting a

menu choice and reading the explanation line. Should the command selected require

data entry, an entry screen such as the one shown if Figure 6 is presented. Each

item of data needed has its own field for entry. Syntax, data type, and checking

for values within a legal range are performed during entry. Sanity checks are also

performed such as insuring that a probability distribution sums to 1.0. Feedback

is supplied if an error is detected and the user is required to re-enter the data. A

method for aborting any operation (usually the ESC key) in AFids is provided so

that if a command is selected by mistake no permanent damage is done. Further,

before irreversible changes are made to the diagram (such as solving it) the user is

prompted to save the diagram to disk.

Figure 7 shows how the graphical representation of an influence diagram is

displayed in AFids. The graph is displayed in exactly the same form as appears

in influence diagram literature. Operations affecting the graphical structure of the

diagram (such as adding or deleting a node or arc or manually choosing a node to

remove) are carried out here. Node selection and placement are carried out by the

point and click method. When an operation involving a node is selected the user is

presented with the graphical display of the diagram he then points to the node or

nodes involved with a graphics cursor and hits the enter-key. As in the data entry

27

Exo Seis Test\ . Ses Struct Ait Of Oil

Test Results

Drill? v ne
Test?

Drill Costs

~Nt P r of it,

Osts ~ ots

Figure 7. Typical AFids Graphics Display Screen

28

case the user can always abort any operation without causing any damage. See

Appendix A for full details of the AFids user interface and command set.

L Error messages are provided for all system detected errors. An English lan-

guage explanation accompanies each error message for the convenience of the user.

3.4 Program Philosophy and Data Structures

This sections describes the structure of the AFids code as it applies to rep-

resenting the influence diagram and some of the programming philosophy the re-

searcher tried to include in the program design.

The Pascal heap feature provides a very convenient way of dealing with data

storage requirements which cannot be determined at compile time. The heap repre-

sents all of the available memory in the computer not taken up by AFids and other

programs or data. A program can reserve memory from the heap and return it when

it is no longer needed. AFids uses this feature extensively. Only the bare minimum

of program variables and data structures are declared at compile time. The vast

majority are allocated from the heap on-demand at run time. The purpose of this

is to avoid as much as possible any arbitrary limits on the diagram such as a limit

on the number of nodes in the diagram, or on how many outcomes a node may

have. The only limits are those on the maximum size of data objects mentioned

above and that limitation is a function of the microprocessor used in the MS-DOS

type microcomputers. Linked lists provide the method by which the diagram can be

built using data objects allocated and de-allocated at will during program execution.

Figure 8 shows how data elements in the influence diagram are stored using linked

lists. Virtually everything in AFids is either a member of a linked list or an element

of a node in a linked list. The other major data storage object is the linear array.

Since the size of objects like probability arrays and outcome arrays cannot be deter-

mined until the influence diagram is being constructed, linear arrays of the exact to

hold all the required elements are allocated from the heap at run time. In the case

29

Node 1

tProram Variable
element n

* element 1

Node 2
element n
n ext v element 1

element 2

element n Nd

next element 1

element 2

element n

next -- nil

Figure 8. A Linked List Data Structure

30

of probability arrays the number of rows and columns must also be stored for the

program to access the array elements correctly. Using this method allows nodes to

occupy exactly as much space as they need and avoids all limits on the diagram and

its components except for the maximum size already discussed. Figure 9 shows the

components of a influence diagram node as used by the AFids system. Note, only

those elements needed for a particular node type are actually used. Elements that do

not apply to a a certain type of node such as a probability distribution for a decision

node are either set to nil or to 0. As nodes are created during the course of a session

with AFids a chunk of memory the size of the base node structure is allocated from

the heap. Then as processing of the diagram continues various components such as

the outcome array are added, also being allocated from the heap.

3.5 AFids and Dynamic Programming

To implement dynamic programming techniques AFids essentially uses the

method outlined in Tatman and Shachter [7:20-25] by creating subvalue nodes if

possible by separating the value node's function. Special functions have been defined

in the function calculation procedure to help AFids determine separability. The two

functions SUM() and PROD() are known to be separable by AFids. The arguments

for the functions are an arbitrary length list of functions of the various predecessor

nodes. One subvalue node is created for each term in the function argument and

has assigned as its function the term in the original function. The new node's

predecessors are those nodes whose names are mentioned explicitly in its function.

AFids will then split subvalue nodes if their function is one of the separable functions.

The diagram is then solved using the separable value function solution algorithm as

given in Chapter 2.

31

Node

name

x-coord

y-co00rd.

predecessors

successors
node-..type

num-outcomes

outcomes

optimum-decs

num-given s
givens

num-probs

prob dist

fun cs tri ng0.srn

next 0 etNd

O-K KDO linked list

FFTT linear array

Figure 9. The AFids Data Structure For An Influence Diagram Node

32

3.6 AFids Unique Features

The AFids software package was design from the ground up to accommodate

the needs of separable value functions and dynamic programming. As such it in-

corporates several features not found in other influence diagram processing software.

Extensive features for the handling of deterministic nodes are included. The existing

influence diagram software handles deterministic nodes by simply converting them

to chance nodes before the solving process begins. As we have seen this is not practi-

cal for diagrams containing chains of deterministic nodes as are common in Markov

decision processes. AFids handles the exponential growth of the outcome space in

these chains in four ways.

1. When AFids converts a deterministic node into a chance node it combines

outcomes which have the same numeric value and only creates one entry in

the outcome table to reduce the size of the outcome space and the probability

array. In the default case the 'same numeric value' is defined to be within 1.0

x 10- this small value will match numbers with only round-off error differences

such as 1.99999999 and 2.0.

2. AFids introduces the concept of a round-off value for a deterministic node

function. The round-off value is optionally set when the user enters the func-

tion. At the time the deterministic node's outcomes are calculated they are

rounded to the nearest multiple of the round-off value. For example, if the

round-off value is set to 3.0 the only outcomes the node could have would be

-3, 0, 3, 6, 9, . .. Thus, the user has control over the precision used when

calculating the outcomes of the node. Obviously this can help the exponential

outcome growth problem, when used in conjunction with item 1, but does not

eliminate it because a node can still have any number of outcomes they are

simply restricted to multiples of the round-off value.

33

3. AFids also introduces a concept called 'outcome limiting'. As implemented in

AFids, a set number of outcomes can be defined for a node or group of nodes.

When the outcomes of the function are calculated they are rounded into the

required number of 'bins' whose values span the high and low outcome values

calculated. Then when the node is converted to a chance node only the set

number of outcomes are allowed. Thus for chains of deterministic nodes the

outcomes space will not grow exponentially or even linearly it will be fixed.

4. AFids also introduces the concept of algebraic combination to eliminate de-

terministic nodes. Figure 10 illustrates the concept of algebraic combination.

Essentially deterministic nodes are eliminated before their outcomes are calcu-

lated by algebraically combining their functions into the value node function.

It is easy to see that algebraic combination cannot increase the size of a prob-

lem but may reduce it significantly. When processing a diagram for dynamic

programming the procedure is to algebraically combine all deterministic nodes

O possible and then proceed to separate the value function if possible. That way

the problem of converting deterministic nodes to chance nodes may be at least

partially eliminated.

Another unique feature of AFids relating to deterministic nodes is the function

calculation procedure. The available influence diagram software handles determin-

istic functions by defining them in-terms of LISP language functions which are very

confusing to a user not familiar with LISP (DAVID has a limited capability for repre-

senting functions in algebraic format). AFids functions are entered as strings by the

user. The format is the same as many common high level programming languages

such as BASIC, FORTRAN or Pascal. Many predefined functions are included in

the AFids package for scientific, financial, and logical calculations(See Appendix A

for a complete list of AFids functions). Adding new functions simply requires adding

the new function name to the list in AFids and providing a subroutine to do the

34

X D

F F=X+D

v V=X (X+D)

Figure 10. Functional Combination in Deterministic Nodes

35

calculation (AFids must be recompiled). This makes it easy for customized functions

for a particular customer's problem to be added to AFids.

The final 'unique' feature of AFids is speed. The program processes diagrams

very quickly. This is due partially to good program design and partially to the Turbo

Pascal compiler. For example, AFids solves the oil wildcatter problem (diagram is

given in Chapter 1) approximately 7 times as quickly as DAVID and about 20 times

faster than PerForma.

36

-" IV. Applications

This chapter will discuss two sample applications of dynamic programming

and influence diagrams to decision problems. Several insights into the suitability of

influence diagrams to various types of problems are revealed. The first application

involves a typical Markov decision problem of deciding when to send aircraft in for

maintenance. The second involves allocation of resources between procurement and

research and development for artillery shells. This second application, as formu-

lated, has very little uncertainty in it and would traditionally be solved with linear

programming.

4.1 Application #1: Aircraft Maintenance

In this application a maintenance officer for an aircraft squadron wants the

optimal policy for when to send his aircraft to the depot for maintenance. The

aircraft are rated to be in one of four readiness categories, which he determines once

each month. At that time he can decide to send the aircraft in for depot maintenance

or to leave it in service until the next month.

Figure 11 shows the structure of the problem as formulated in an influence

diagram. The nodes labeled S. represent the random state of the aircraft in month

n. The nodes labeled Dn represent the maintenance officer's decision for that month

whether or not to send the aircraft for maintenance (month 0 is the initial state of

the aircraft). The node labeled S5 represents the aircraft state at the end of the

fifth month (a salvage value). Notice that the arcs in the diagram show that the

officer knows the state of the aircraft in month n before he makes his decision and

the state at any time period depends on the previous state and decision. There is an

availability cost associated with aircraft being in less than top shape due to sorties

missed, extra crew maintenance etc. There is also a cost for sending the aircraft to

37

.

COST

Figure 11. Influence Diagram for the Aircraft maintenance Problem

38

the depot. The total cost will then be:

C ostav.ilbility, + COStdepot,
i=1

What the officer would like to do then, is minimize his cost for operating the

squadron. He must trade off between availability and maintenance costs. The out-

comes of the aircraft state and maintenance decision influence the value node, which

represents the cost of operating the squadron for the given time period. In the inter-

nal influence diagram storage the costs would be stored as negative numbers. Thus,

when the expected value is maximized the cost is driven toward zero.

WVhen solving this diagram, notice that for each stage(month) there are eight

possible combinations of outcomes for the two nodes composing that stage(four

aircraft states and two decision states). Thus, the total number of outcome combi-

nations for the value node is 85 x 4 or 131,072. Storing this many numbers exceeds

the capacity of AFids, in fact at 6 bytes per real number that many numbers would

require =800K of memory. The time required to calculate the values would also be

prohibitive even if the results could be stored, especially for an interactive system

(AFids, which is the quickest influence diagram solver, would require over five hours

just to calculate the value node outcomes, not to mention doing the expectations

and maximizations to actually arrive at a solution).

Since the value node is a simple sum of the stage values, it fits the criteria,

defined in Chapter 2, for being separable. The value node will be split into six

subvalue nodes each representing the cost for a stage (the stage reward, in dynamic

programming terms). Figure 12 shows the influence diagram with subvalue nodes

added. The expectation and maximization operations to solve the diagram may now

be carried out with respect to the subvalue nodes according to the solution algorithm

given in Chapter 2. The number of outcomes for all of the subvalue nodes is (8 x 5) +4

or 44 and AFids solves the diagram in about three seconds. The steps followed are

exactly the same as would be taken if the problem was solved by classical dynamic

programming. The power of influence diagrams in solving this type of problem lies

39

Figure 12. Ifluence Diagram for the Aircraft Mlaintenance Problem Nvith Subvalue
Nodes Added

110

not only in providing a solution to the basic case but quick and efficient solution of

variations on the basic case. Addition of time lag dependencies and calculation of the

value of information and control are easy with influence diagrams (and very difficult

to calculate using dynamic programming or classical probability theory) and a good

software package such as AFids. Much insight into the true relationships among the

various variables can be gained.

4.2 Application #2: Procurement vs R&D

In this application a decision maker is trying to decide how to allocate his

resources for an artillery shell program. He can either spend all of his budget alloca-

tion on procurement or he can spend 25% of his budget on research and development

to improve the effectiveness of the shells. His objective is to maximize the number

of targets the stockpile of shells can kill in each year of a five year program. The

target killing potential at the end of each year provides a convenient stage reward

with the final objective function being the sum of the yearly values. Figure 13 shows

the components of a yearly stage and their relationships with the previous and fol-

lowing years. The nodes labeled Nk represent the number of weapons required to

kill one target. Nodes labeled Imp represent the improvement in Nk resulting from

a decision R&D to 'buy' R&D for that year or not. Finally, nodes n represent the

number of weapons in the inventory at the end of the year. The number of weapons

is influenced by both the budget node B and the decision. Notice that the decision

maker knows the Nk and n for the previous year at the time he makes his decision.

There is very little uncertainty in this problem compared to the previous example

(only four out of twenty two non-value nodes are chance nodes vs six out of eleven

in the maintenance problem).

Figure 14 shows the complete influence diagram for the procurement problem

with the subvalue nodes already split out from the value node. When attempting

to solve this diagram we immediately run into problems with the large number

41

STargets

Figure 13. A Stage in the Artillery Shell Problem

42

©k k k k nk4 k

R&DOD2 &D

Figure 14. Influence Diagram for the Procurement Problem

43

of deterministic nodes. According to the algorithm, before solution can begin all

deterministic nodes must be converted to chance nodes. We can see that both the

Ni and the ni nodes form a chain in which each year is influenced by the previous

year's outcomes. To illustrate the problem let us calculate the number of outcomes

node n 4 will have assuming three different possibilities for budget level (Bi), and

the two possible outcomes for the decision node R&Di. For year i the size of the

outcome space will be: 2 x 3 x ni-1 . Thus for year four there will be 1296 outcomes.

The maximum size of the probability array will be 12962 or 1,679,616 elements. This

number is obviously far beyond the capability of existing software, and this is but a

small simplified problem. Clearly these chains of nodes which have the number of

outcomes depending on the number of outcomes of their predecessors are a problem.

AFids provides two ways of dealing with this problem. First, the outcomes

can be rounded to some precision (for example to the nearest 100). AFids will then

recognize the identical outcome values and only create one entry in the outcome list

for that value. This method obviously just delays the exponential explosion. Still

it may be enough to get a solution for small problems such as this. For larger or

more complex problems the only solution is to make the number of a node's outcomes

independent of the number of outcomes its predecessors have. AFids is unique among

influence diagram software in implementing 'outcome limiting' for nodes. When the

problem is formulated the number of outcomes a deterministic node may assume

is set. Then, when the node is converted to a chance node all the outcomes are

calculated and the range between the high and low values is determined. The values

for the set number of outcomes are created by dividing the range into that many

segments. Each calculated outcome is then rounded to the closest segment value.

This method effectively blocks the exponential growth problem because a node can

only have up to some fixed number of outcomes. For example if the n, nodes were

limited to ten outcomes, the maximum number of outcomes node n4 could have

would be 2 x 3 x 60(max number of outcomes for the previous node n3) or 360

44

which would then be reduced to 2 x 3 x 10 or 60, and the resulting probability

distribution would have at most 3600 elements. This will be true for a chain of any

length so long as the outcomes are limited. The method of letting the un-rounded

outcomes determine the values for the limited outcomes, rather than choosing the

actual values during formulation, preserves the maximum range in the outcomes and

frees the modeler from trying to estimate the outcome range beforehand. Once this

problem is solved the diagram can be solved using the solution algorithm. As in

the previous example, the subvalue nodes keep the outcome space of the value node

from becoming prohibitively large.

A second set of problems with an influence diagram solution to this problem is

not so easy to solve. The problems are with the simplifications that must be made to

the problem in order to formulate it as a reasonable influence diagram. The example

shown in Figure 14 has 28 nodes and makes one yes or no decision concerning R&D

for one weapon for five years. The original problem from which this example was

drawn was to allocate a large budget amongst 16 different weapons, each of which

would then allocate its budget, as in the example, between procurement and R&D

over a 10 year period. Several additional objectives from the original problem were

not included, such as the weapons attacking different types of targets at different

ranges, and limits on the maximum and minimum numbers of weapons of each type

that could be procured, a varying amount of money spent on R&D, constraints

on program increases or decreases in adjacent years, etc. An influence diagram of

the entire original problem would have thousands of nodes and take a very long

time to solve. The linear programming formulation, on the other hand, consists

of about 1,000 decision variables, a few hundred constraints, and can be solved

in a few minutes with a microcomputer based LP solver. The LP solution also

allows (almost requires) continuous variables which the influence diagram does not.

One shortcoming of an LP solution is that the uncertainty in the problem must be

effectively ignored. So it would seem an influence diagram system with continuous

45

variables to represent the functional relationships as well as handle the uncertainty

in the standard manner could do a better job than LP at modeling this type of

problem.

4.3 Application Observations

In the first application example influence diagrams could be used effectively

to answer the primary question, and to provide efficient handling of variations on

the basic problem. The nature of the solution process can reveal many insights

into the underlying relationships among the problem variables and influence diagram

software provides the vehicle for obtaining the information in quickly and in a manner

easily understood by decision makers and modelers alike. The use of the subvalue

node along with software to recognize the separability of the value function allows

problems of this type, which were formerly computationally intractable, to be solved

efficiently. In this first example, the primary question to be answered was to find

the best policy for sending the aircraft for maintenance. Random variables played

a large part in the problem (over 50% of the nodes were chance nodes). Influence

diagrams have always been good at solving decision problems containing significant

uncertainty. This application seems to be an example of a problem that can be solved

well by influence diagrams especially when the separability of the value function and

subvalue nodes are used.

The second application example essentially tried to force influence diagrams to

do the job of linear programming. The primary question to be answered was whether

or not to pay for R&D on the weapon. However, the large number of simplifications

and discretizations necessary to fit the problem into an influence diagram formulation

shed considerable doubt on the validity of the solution even before the solution was

attempted. Most of the computational effort was spent on converting functional

relationships into a form which the influence diagram could manipulate. A special

operation was needed (outcome limiting) to enable influence diagrams to handle

46

the combinatorial explosion of the deterministic node chains, and the rounding of

calculated values decreased the precision of the answer. Further, while theoretically

able, influence diagrams were not practically able to handle the full problem and

certainly not any complications to the basic case, which in this type of problem

usually take the form of additional variables or constraints. The problem contained

little uncertainty, the majority of the information in the model was represented by

the functional expressions of the Nk, Imp, and the n nodes. This example showed

that influence diagrams, especially with the features of the AFids software package,

can be used to solve many types of problems. However, this example would seem to

be one which does not lend itself well to solution via influence diagrams.

47

V. Areas for Further Research and Conclusions

5.1 Areas for Further Research

The AFids software package developed in conjunction with this thesis research

provides capability equal, in most cases, to the state of the art in commercial mi-

crocomputer influence diagram software and incorporates several unique features.

Future enhancements to the software may take one or both of two directions.

1. The software may be polished and features added with the intention of pro-

ducing a commercial quality package. The software could then be distributed

as a general problem solving, decision analysis aid to customers throughout

the US government. AFids could become a government standard for influence

diagram processing. AFIT would, of course, have to be willing to support the

software at a commensurate level.

2. The software could be extended as a research vehicle for examining and im-

plementing techniques and routines on the cutting edge of influence diagram

theory. In this capacity it would be suitable for faculty or student research,

for class work, and for 'one time' problem solving for customers. AFIT would

not have to support the package in this capacity.

Following is a list of additions to AFids the researcher feels would extend the

usefulness of the program. The suggestions are in rough order of importance.

e The addition of deterministic and stochastic sensitivity analysis would make

AFids equal to the best in commercial influence diagram software. The tech-

niques for implementing this are well known but there was simply not enough

time to include sensitivity analysis in the thesis version.

48

9 The addition of explicit value lotteries would also enhance the completeness

AW of AFids for general decision analysis work. As above, this addition requires

nothing new in influence diagram theory, just programming effort.

* Continuous decision and random variables are not supported by current influ-

ence diagram software. Addition of this capability would advance the state of

the art in influence diagram software and would allow exact solution of a large

class of problems which can currently be handled only by approximation. Only

the basic work in this area has been done [4], so implementation would require

a research effort, analogous to the current thesis research, to implement the

theory in a usable form.

e Another area of research which has not received much attention is the concept

of an influence diagram node representing a vector of variables. This capability

would allow influence diagrams to model larger problems without the visual

complexity that explicitly representing each variable can create. This addition

would require significantly more effort than the previously mentioned additions.

Both extension of influence diagram theory and software implementation would

be required.

e The ability to handle either values or probabilities as symbolic data would pro-

vide capability for analyzing problems where explicit values for certain quan-

tities are difficult or impossible to obtain such as the dollar value of a human

life. Implementation of symbolic data processing in influence diagram software

would be a major advancement in the state of the art.

e Porting AFids to run on other computer systems would increase its availability

to all types of users. A mainframe version would offer increased processing

speed and eliminate the size limitations, possibly at the expense of interactive

graphics. Other microcomputer versions would allow students and government

customers with other makes of computer to use AFids.

49

* Following are a list of improvements the researcher feels would improve theK current MS-DOS compatible version of AFids(in no particular order):

- Modify AFids to run on different graphic display adapters.

- Convert AFids to run completely in graphics mode. The menu and data

entry displays could be implemented as windows.

- Add on-line help support.

- Add mouse support.

- Improve the output reporting both printed and on-screen.

- Support different printers and add plotter support (currently only Epson

compatible printers are supported).

- Modify the program logic to eliminate the size limitations imposed by

Turbo Pascal, possibly switch to a different Pascal or other language such

as Modula-2.

- Allow nodes to represent the outcome of a separate node or diagram

stored in a separate file. This creates essentially a third dimension to the

diagram where the results of other analysis can be included the current

model without laboriously re-entering data each time the other analysis

is modified.

- Add links to spreadsheet and database software.

- Improve function calculations by improving the function location algo-

rithm and by storing string numbers in internal real number format(these

two improvements could easily reduce the function evaluation time by a

factor of three).

5.2 Conclusions

The software package, AFids, developed in conjunction with this thesis re-

search meets the goals set forth in Chapter 1. It is user friendly, interactive, and

50

provides a graphical environment for the processing of influence diagrams. The soft-

ware is written in a popular high level compiled language providing both excellent

performance and easy access for future researchers. The quality of the software is

such that it is suitable for using during the entire decision analysis cycle from initial

formulation to solution. It is cost free to all US government agencies and has no re-

striction, except for commercial use, on distribution of either the compiled program

or its source code.

Several advancements to the state of the art in influence diagram software are

incorporated in AFids. Automatic use of the separability of a value function in-

creases solution efficiency without additional effort on the part of the user. Several

types of deterministic node processing are implemented including automatic alge-

braic function combination, optional deterministic node value rounding, and optional

deterministic node value limiting. No other influence diagram software, commercial

or otherwise, includes these features.

The software has been applied to several application examples and demon-

strates the validity and efficiency of the subvalue node and separation of the value

function. The decision process, a type of problem previously computationally in-

tractable for influence diagrams, has been added to the list of problem types solv-

able by influence diagrams. The application examples also showed that influence

diagrams are ineffective in problems where there is little uncertainty or where a

large portion of the problem information is contained in functional relations.

51

Appendix A. AFids Users Manual

A.1 Introduction

The AFIT Influence Diagram Sy-tem (AFids) is a general purpose influence

diagram processing software package incorporating several unique features for pro-

cessing diagrams via dynamic programming and for handling the special problems

associated with deterministic node processing.

AFids is suitable for creating, editing, and solving influence diagrams of all

sizes and complexity levels. The primary AFids input device is the keyboard. Com-

mands are entered into a menu interface similar to that of Lotus 1-2-3. A graphical

representation of the influence diagram is also presented and nodes are selected for

operations via the point and click method. Data entry screens are provided when

numeric or string data is required. Data checking for type, syntax, and value range

is done on user entered data. Sanity checks are also made, such as making sure a

probability distribution sums to 1.0. This provides an intuitive command system

which provides the new user with mnemonic commands and explanations in menu

selections and speed for the experienced user who can execute commands as quickly

as he can hit the first letter of the command.

This users manual does not attempt to teach the user influence diagrams. It

contains instructions on the commands and functions included in AFids and how to

execute them. For a tutorial on influence diagrams and AFids capabilities with re-

spect to solving problems see the companion document AFids Tutorial and Example

Session.

AFids was written in Turbo Pascal 4.0 on a Zenith Z-248. It requires MS-DOS

version 3.0 or greater, an EGA adapter and monitor, and at least 256K of memory.

52

A.2 Getting Started

To start the AFids system make sure you are in the subdirectory containing

the AFids.mnu file. Two versions of AFids are provided, AFids87.exe is for use

with a numeric coprocessor (i.e. an 8087, 80287, or 80387), AFids.exe is for systems

without a numeric coprocessor. From the DOS command line type either 'AFids87'

or 'AFids' to start the program. If the program will not run make sure that the

AFids.mnu file is present and that at least 256K of memory is free. If the program

still will not run you may be using an incompatible version of DOS. AFids was

compiled under MS-DOS 3.0 and will probably not work with earlier versions.

Once the program starts you will see the greeting screen, to clear it hit any

key. Next, you will be presented with the initial preferences screen. You may hit

CTRL-ENTER to begin a new diagram or hit 'y' in the first field and enter the file

name of an AFids diagram file in the second. Currently, the no-graphics option is

not implemented. When the screen reflects your preferences hit CTRL-ENTER to

begin.

If you selected a diagram file it will be loaded and the graphics screen will

display that portion of the diagram visible from the center of the graphics work

area. To begin processing hit any key and the main menu will be presented. You

may now perform any AFids command on the diagram.

If you did not select a diagram file for loading you will be taken directly to

the main menu where you may construct a new diagram for processing or load an

existing one with the Files Menu 'Read' command.

A.3 System Command Structure

Figure 15 shows a typical AFids text screen display. The current menu occupies

the bottom three lines of display. The upper lines are used to display diagram

information and for data entry screens such as the one in shown.

53

/- "

Create/Edit Chance Node Probab:ities

Chance Node: Chance.
G. ven:

Decision2=Low

Outcome Probability Outcome Probab:lity
result! 0.2500003
result2 0.2500030

result3 0.2500000m result4 0.2500003

7d:t Node Yenu 11/2S/88 15.2 -
Outcomes ?robs Function Build Table Quit
'hange pr-tab:lity array for chance node

Figure 15. AFids Text Screen Display

5-1

The top line of the menu display shows the current menu name and the current

date and time. Commands are chosen from second line of the menu by either high-

lighting the menu choice and hitting ENTER or by hitting the identifying letter (the

first in most cases) of the command name. There will be only one capital letter in

a command name this is the identifying letter. Commands may be high-lighted in

turn by hitting either the SPACE bar or the left and right arrow keys. The ESC

key or the 'q' key will move to a previous menu (or produce a termination prompt

if hit at the main menu). Hitting letters other than those identifying commands

causes no action. The third line of the menu display is the explanation line. A brief

description of the high- lighted command is given in this line.

Above the menu in Figure 15 is a data entry screen. Nearly all user input data

in the AFids program will use this type of screen. The data entry screen consists of

a number of fields. Data is entered into the field by typing letters and numbers as

required. The ENTER key is used to accept the data as it appears in the field. The

i data currently in the field may be edited using the following command keys:

ENTER Accepts the data as it appears in the field. When data is accepted it

is checked for type (i.e. is it a valid integer or real number) and optionally

whether it is within a certain range (i.e. probabilities must be >0.0 and <1.0).

A beep will sound and the cursor will remain in the field if an error is detected.

Data in each field must be correct (of the right type) before the cursor can

leave the field. The cursor is moved to next field or the whole screen is entered

if the cursor is currently in the last field.

CTRL-ENTER Accept the entire screen as it appears. This may be used from

any field and can save time hitting ENTER to move down to the last field.

This is the recommended way to accept a large number of fields.

TAB, Down Arrow Similar to ENTER, accept the current data and move the

cursor to the next field. The cursor will wrap around from the last field to the

55

first using this command unlike the ENTER key which will enter the whole

screen if hit in the last field.

Up Arrow Accept current field and move cursor to the previous field. This com-

mand will wrap the cursor from the first field to the last.

Left Arrow, Right Arrow These keys will move the cursor one character within

the current field in the indicated direction. A beep will sound if moving past

the end of the data is attempted.

END This key will move the cursor to the end or right most character position in

the current field.

CTRL-END This key will delete all characters from the cursor position to the end

of the field.

HOME This key will move the cursor to the first or left most character position in

the current field.

CTRL-HOME This key will delete all characters from the cursor position to the

start of the field.

INS Change the character entry mode to Insert. The cursor will change to a large

size and any characters entered will be inserted into the string and push char-

acters to the right. Hitting INS again returns to normal Typeover mode.

ESC May be used at any time from any data entry screen to cancel the screen and

the operation without harm. No data is ever changed if a data entry screen is

exited with the ESC key.

Usually default data is provided for fields requiring entry. Some fields are for display

only. Data in these fields cannot be changed. A data entry screen may be exited

without changing any data by hitting the ESC key.

Figure 16 shows a typical AFids graphic display. The display shows only 1/9th

of the total AFids display work space which is three screens wide by three screens

56

high. The graphics cursor is a white symbol which looks like e. The nodes are

represented by the following shapes:

Chance Node Circle or ellipse. Represents a random variable.

Decision Node Square or rectangle. Represents a decision variable.

Deterministic Node Double circle or double ellipse. Represents a function or

constant.

Subvalue, Value Nodes Rounded square or rectangle. Represents either a sub-

goal or the objective function of the model.

Arcs in the diagram are represented by an arrow pointing from the predecessor node

to the successor node. In general, the AFids visual representation is the same as

most influence diagram literature. To see the entire graphics work space a zoom

display is used (See Figure 17). In this mode all objects in the graph are displayed

at 1/3 size, nodes are not labeled, nor are arrowheads drawn on the arcs. This mode

may be selected from the View menu and is automatically displayed when solving

the diagram in visual mode so that the effect of all operations can be observed.

Many commands will require modification to the influence diagram graph.

When this is the case the user will be shown the current view of the graph and a

graphics cursor will appear. The user positions the graphics cursor with the following

keys:

Arrow keys Move the cursor one 'jump' in the indicated direction. If the cursor

goes off the screen the screen view will be shifted one half screen in that

direction and movement may continue. If the absolute edge of the screen is hit

no action will be taken.

Shift-Arrow keys Move the cursor five 'jumps' at a time. This is useful for moving

rapidly but may not allow precise positioning.

57

,# Sei tu ,(Exo Seis Test ~ i trc* -Anmt of 0"l

Test Resules

Driest- Revenues,

DrillCosts)

(TestingCostSN
t/

__4,Net Prof it,'

(Total Costs;

Figure 16. An AFids Graphic Display

i 10

...U _

Figure 17. The Zoomed AFids Display

59

+ Key, - Key Increase or decrease the size of a 'jump'. The default setting is

about 10 pixels per jump. This is useful for adjusting the sensitivity of the

graphics cursor when using a mouse or when the default jump size is to large

or small.

ENTER Return the current position of the graphics cursor. When selecting a node

the cursor should be within a distance equal to the size of a normal node(i.e.

a circle or square). In some cases when a node has been stretched to hold a

very long name hitting ENTER when the cursor is on the extreme edge will

not select the node. To select the node simply move the cursor closer to the

center of the node and hit ENTER.

ESC This key has two uses depending on the situation. If a single position is to

be returned ESC cancels the operation. If multiple nodes are to be selected

ENTER selects each one while ESC ends the selection process. Hitting ESC

in this case before the first node is selected will cancel the operation.

A.4 Using Dynamic Programming

To use the dynamic programming features of AFids requires no special effort or

knowledge on the part of the user. When the command is given to solve the diagram

AFids will automatically attempt to separate the value function into subvalue nodes.

Once the subvalue nodes are created the diagram will be solved using the dynamic

programming algorithm. To separate the value function AFids needs to know that

it is separable. Two functions, SUM() and PRODO are known to be separable by

AFids. AFids will also split the subvalue nodes if their functions contain a SUM()

or PROD() function Splitting the value node requires minimal overhead and the

solution using subvalue nodes will always be at least as fast as not using them, so it

is recommended that the user utilize the SUM() and PROD() functions whenever an

addition or multiplication is in the value function. Subvalue nodes may be created

directly during diagram creation if the combined value function will not fit in the

60

allowed space or if it is simpler to create them explicitly. These subvalue nodes

created 'by hand' are treated exactly the same as those created by AFids during

solution. Note, if subvalue nodes are the only predecessors of the value node AFids

will assume that the value function has been split already and will not attempt to

split. This occurs because of AFids ability to be interrupted during the solution

process.

A.5 Menu Commands

In the following sections the commands available via the AFids menus are

described. As mentioned above, commands may be selected by either high- lighting

them and hitting ENTER or by hitting the identifying letter of their name (either

upper or lower case letters may be used). The ESC and 'q' keys move to the previous

menu. Each menu description will consist of the menu command as it appears in the

menu, the identifying letter and a description of its action.

£ ~ A.5.1 Main Menu

Create/edit [C]

Moves to the Create/Edit menu where diagram creation and editing commands

are performed.

Solve [S]

Moves to the Solve menu where diagram solution operations take place.

Files [F]

Moves to the Files menu where file loading, saving, and transcript file control

is performed.

Output [01

Moves to the output menu where the graph may be printed or the data for a

node or nodes may be listed to any combination of the screen. i file, or the

printer.

61

-L----.-..-.-----....... :-..: -..,.__._,__.. ...

New [N]

Causes the current diagram to be erased and the program returns to the initial

screen. The user is prompted to verify before the diagram is erased.

sTatus [T]

Displays various information about the current diagram including number of

nodes, and available memory.

Hand-calc [H]

Clears the screen and prompts the user for a mathematical expression which is

evaluated by the function evaluation procedure. The user enters the expression

as a string in algebraic format. Note, only numbers and functions are allowed

in the expression, nodes may not be referenced. Expressions are evaluated until

a blank line is entered.

View [VI

Moves to the View menu where the graph may be viewed in either fuAl size of

zoomed view. Also, the center of the full size view may be adjusted.

Quit [Q]
Prompts the user before quitting the AFids system back to DOS. Note, the

current diagram is not saved.

A.5.2 Create/Edit Menu

Add [A]

Move to the Add Node menu where the various types of nodes may be created

and placed in the diagram.

Edit [E]

Move to the Edit Node menu where various data items of an existing node may

be changed or the outcomes for a deterministic node may be created.

62

Group [G]

Move to the Group Menu where groups of nodes may be created, edited, moved,

and have their outcome limits set.

Delete [D]

Delete a node from the diagram. The graphics display is put up and the user

selects the node to remove. The node is destroyed and all of its predecessors

with data elements depending on the node are reset. For example all chance

predecessors have their probability distributions erased in case they depended

on the removed node. These erased data elements must be re- input before

solving operations can take place.

Move [M]

Move a node. The graphics display is put up and the user selects a node

to move. He then positions the graphics cursor at the new location and hits

ENTER. If the node is not too close to another node it is placed there. This

selection/placing process continues until ESC is hit.

add-arC [C]

Add an arc to the diagram. The graphics display is put up and the user is

prompted to select the predecessor node and then the successor node. An arc

is created between them if one does not already exist and if the arc does not

create , cycle in the graph.

Rem-arc [R]

Remove an arc from the diagram. The graphics display is put up and the user

is prompted to choose the predecessor node and then the successor node. The

arc is removed if it exists. Any data elements of the successor node that might

have depended on the outcomes of the predecessor node are reset.

Pred-set [P]

Modify the entire set of predecessors for a node. The graphicb display is put

up and the user is prompted to choose a node. After the node is chosen all

63

of its predecessors are high-lighted. Predecessors may be added (i.e. an arc

created) by selecting a non high-lighted node. A predecessor may be removed

by selecting a high-lighted node. When the predecessors are correct ESC is hit

to accept the changes or to cancel the command before any changes are made.

Quit [Q]

Return to the Main Menu.

A.5.3 Add Node Menu When commands from this menu are selected the user

is presented with a pair of data entry screens to specify the new node's name and

either its outcomes or function. When these data have been entered the graphics

display is put up and the user is prompted to place the new node in the diagram.

To do this, the user moves the graphics cursor to the location for the center of the

new node and hits ENTER.

Chance [C]

Add a chance node to the diagram. The user is prompted for the node's name

and outcomes. The probability distribution is set from the Edit Node Menu

after all of the node's predecessors are determined.

Decision [D]

Add a decision node to the diagram. The user is prompted for the node's name

and outcomes. This is all that is required for a decision node.

deTerministic [T]

Add a deterministic node to the diagram. The user is prompted for the node's

name and function. For more details on the function definition see Section A.6.

Subvalue [S]

Add a subvalue node to the diagram. This is not normally needed as the

solution algorithm will create subvalue nodes as needed but may be useful in

special cases or for completely manual operation. The user is prompted for the

node's name and function.

64

Value [V]

Add the value node to the diagram. A value node is needed for solving op-

erations. Only one value node is allowed per diagram. The user is prompted

for the node's name and value function. The value function represents the

objective function of the model and should be in maximization form i.e. solu-

tion operations will attempt to maximize the value of the value node function.

If the user wants to minimize a function he should enter the negative of the

function so that maximization will drive the value toward zero.

Quit [Q]
Return to the Create/edit Menu.

A.5.4 Edit Node Menu When commands from this menu are chosen the

graphics display is put up and the user is prompted to select the node to be modi-

fied. To do this the user moves the graphics cursor on the node of interest and hits

ENTER. The user is then presented with a data entry screen containing the data

Scurrently assigned to the node. The user may then modify the data using the editing

commands given above. When the data are correct and the screen is accepted the

new data will replace the old. The ESC key may be used to abort the operation at

any time.

Outcomes [0]

Modify the outcomes of a node. The node's outcomes are presented in a data

entry screen. The user may change the names of the outcomes or their values

but may not change the number of outcomes since that could affect successor

nodes. To change the number of outcomes for a node delete it and create a

new node. This will ensure that all data elements are consistent with the new

number of outcomes. The ESC key will exit without change.

Probs [P]

Modify a nodes probability distribution. The probabilities for the node's out-

65

comes are presented for each combination of predecessor outcomes and the user

is allowed to change the probability distribution. The ESC key will exit with

no change.

Function [F]

Modify a deterministic, subvalue, or value node function. The function is

presented in string form in a data entry screen. The user may modify the

function as desired. If the function is modified the outcomes for the node, if

calculated, are discarded. For more details on entering and modifying functions

see Section A.6.

Build [B]

Build a deterministic, subvalue, or value node's value table from its function.

The function is evaluated for each combination of predecessor outcomes and

the result stored in the outcome table. For more details on function evaluation

see Section A.6. Once this command begins there is no way to halt it short

0 of aborting the program. This is not usually a problem, but evaluating a very

large number of predecessor combinations may take several minutes depending

on the number of combinations and the complexity of the function.

Table [TJ

Build a deterministic, subvalue, or value node's value table by hand. Each

combination of predecessor outcomes is presented and the user may enter the

value of the node for that combination. This is useful for nodes where no

function exists or for which AFids does not possess the capability to evaluate

it. This is only useful for nodes with a small number of predecessor outcomes.

The ESC key will exit at any without modifying the outcome table if it exists

or cr'-ating a new one if it does not.

Quit [Q]
Return to the Create/Edit Menu.

66

A.5.5 Group Operations Menu Commands in this menu are for the manipu-

lation of node groups. Node groups do not have any effect on the data contained in

the nodes or the solution process except in the case of outcome-limiting. Groups are

displayed on the zoomed graphics display. When the user does selects a command

dealing with an existing node group, the user selects the group of interest as follows.

When the operation is selected the zoomed graphics display will be put up and the

first group of nodes will be high- lighted. The user may cycle through the groups by

hitting the SPACE bar. When the correct group is displayed, the user hits ENTER

to select it.

Create [C]

Create a new node group. The diagram is displayed in zoom mode. Nodes

are high-lighted to enter them in the group. Selecting a high-lighted node de-

selects it. When the group is correct the ESC key accepts the group. The

operation may be aborted by de-selecting all nodes and hitting ESC.

Edit [E]

Edit a node group. The diagram is displayed in zoom mode and the nodes in

the first node group are high-lighted. The SPACE bar cycles through the node

groups. Hitting ENTER selects the displayed group for editing. Nodes may

then be added or deleted from the group as above by high-lighting and de- high-

lighting nodes. The ESC key accepts the modified group. The operation may

be aborted by ESC before the group is selected and by hitting ESC without

making any changes to the group.

Move [M]

Move a group. The diagram is displayed in zoom mode and the group to move

is selected as above. When the group has been selected the graphics cursor

is placed at the 'center' of the group i.e. all the locations are averaged. The

cursor is then moved to the new center location. The ENTER key will cause

the group to be placed around the new center location in the same relative

67

location as they were around the old center. This is useful for spreading out a

diagram which is becoming crowded during creation but is quicker than moving

each node individually. The ESC key will abort this operation at any stage.

Set-outcomes [S]

Set the number of outcomes allowed for the node group. As above this com-

mand causes the diagram to be displayed in zoom mode and the node groups

to be high-lighted with the SPACE bar cycling through them. ENTER selects

the group to set outcomes for. The user is prompted to enter an integer number

of outcomes that each node in the group may have. This feature only effects

deterministic, subvalue, and value nodes. For a detailed discussion on outcome

limiting see Section A.6. ESC will abort during group selection. If an incorrect

value is entered for the group, the operation may be repeated and the correct

value entered.

Quit [Q]
*Return to the Create/Edit Menu.

A.5.6 Solve Menu Commands in this menu select the solution mode or oth-

erwise check the diagram for its readiness to be solved.

Manual [M]

Move to Solve Operations Menu. When the Manual command is selected the

diagram is checked for missing data. The user is alerted with a error message

about each item missing. Solving cannot continue until all required data are

present.

Automatic [A]

Solve the diagram automatically. As above this command causes the diagram

to be checked for missing data. The user is then prompted to save the diagram

if desired. AFids then proceeds to solve the diagram. Upon solution the time

elapsed, expected value of the value node, and the optimal policies for the

68

decision nodes are displayed. This information is also saved to the transcript file

and/or printer if active. During automatic solution the keyboard is monitored,

if the ESC key is detected the program will abort solving leaving the diagram

in a partially solved state. Selecting Automatic or Visual will then restart the

solution process where it left off.

Visual [VI

Solve the diagram automatically pausing between solution steps and display

the diagram. As above the diagram is checked for missing data. The diagram

is displayed in the zoom out mode so that the effect of each solution step may

be observed. The diagram is then solved automatically as above. However, the

user must hit a key after each step. The ESC key will exit the solution process

at any time. This allows the user to inspect nodes, save the partially solved

diagram, etc. Solution may then be restarted from where it left off with either

Visual or Automatic. This is useful for observing part of the solution process

but not allows the user to use the Automatic mode for the remainder. The

Visual solution mode is significantly slower than the Automatic mode because

of the time required to re-draw the diagram and for the user to hit a key

between solution steps. Upon solution the expected value for the model, and

the optimal decision policies are displayed.

Show-Missing [S]

Show nodes with missing data. This command performs the same check that

the above commands use except that no error messages are generated. Nodes

with missing data are high-lighted.

Quit [Q]
Return to the Main Menu.

A.5.7 Solve Operations Menu Using the commands in this menu the user

may perform various operations on the influence diagram. All of the operations

69

performed in the automatic solution algorithm may be duplicated by hand from this

menu. Checks are made on each operation before it is done to make sure it is legal.

The general format of these operations is:

1. The user selects the command to perform.

2. The graphics display is presented and the user is prompted to select the node

or nodes to be operated on.

3. The user selects the nodes (usually the predecessor node first if multiple nodes

are required) by positioning the graphics cursor on the node and hitting EN-

TER.

4. The legality of the operation is checked and if the operation cannot be done

an error message describing the problem is given and the user is taken back to

step 3.

5. Once the operation checked as okay, it is performed. When the operation is

complete the modified graphics display is presented.

6. The program will wait until the user hits any key and then will return to the

menu.

The ESC key may be used to abort the operation at any time AFids is waiting for

user input. That is, ESC will not abort the calculations for an operation once they

are begun.

Reverse [R)

Reverse an arc using Bayes Rule. This command reverses the arc between

two chance nodes by using Bayes Rule on their probability distributions. The

graphics display is put up and the user is prompted to select first the prede-

cessor and then the successor nodes. The operation is checked to see if it will

cause a cycle in the graph. If it is okay to reverse the arc the operation is done

70

and the modified graph is displayed. The ESC key can be used to abort the

operation during node selection.

Expect [E]

Remove a chance node by conditional expectation. This command will remove

a chance node by expectation into a subvalue or value node. The graphics

display is put up and the user is prompted to select the node to remove. If

it is okay to remove the node the operation is done and the modified graph is

displayed. The ESC key can abort the operation before the node is selected.

Maximize [M]

Remove a decision node by maximization. This command will remove a deci-

sion node by maximizing the value of the subvalue or value node with respect

to its outcomes. The graphics display is put up and the user is prompted to

select the decision node to remove. The operation is checked, and if it is okay

to remove the node the operation is done. The optimal decision policy is stored

*in the decision node which remains high-lighted in the graph to show that it

has been maximized. After the operation the modified graph is displayed. The

ESC key may be used to abort the operation before the node is selected.

Combine [C]

Remove a deterministic node by algebraic combination. This operation re-

moves an arc between a deterministic node and a subvalue or value node by

substituting the deterministic node's function into that of the subvalue or value

node. The node is not actually removed unless it has no other successors be-

sides the subvalue or value successor. The subvalue or value successor inherits

the deterministic node's predecessors. The graphics display is put up and the

user selects the node to remove. After the operation the modified graph is

displayed. The ESC key can abort the operation before the node is selected.

reDuce [D]

Perform algebraic combination on all deterministic predecessors of a node. This

71

operation will perform the above Combine operation for a certain subvalue or

value node until it has no more deterministic node predecessors. This will work

if a deterministic predecessor has a deterministic predecessor itself. This oper-

ation is useful before general solution is attempted because during the solution

process all existing deterministic nodes must be converted to chance nodes.

This is a computationally expensive operation while algebraic combination is

not. The graphics display is put up and the user is prompted to select the

value or subvalue node to reDuce. After the operation the modified graph is

displayed. The ESC key can abort the operation before the node is selected.

Split [S]

Split a value or subvalue node. This command will split a subvalue or value

node into its components and create new subvalue nodes for each term in its

function. The function must be either a SUM(0 or PROD(). This command

will continue to split the subvalue nodes created until no SUM() or PROD()

functions remain. This operation will automatically place the nodes in the

diagram but not in the most esthetically pleasing locations. This function is a

key part of the dynamic programming features of AFids. If the function is not

separable no action is taken. The graphics display is put up and the user is

prompted to select the node to split. After the operation is done the modified

graph is displayed. The ESC key can abort the operation before the node is

selected.

No forget [N]

Add 'no-forgetting' arcs to the diagram. Arcs from decision nodes and their

direct predecessors must be added to all successor decision nodes to correctly

solve the diagram. All 'no-forgetting' arcs required are added to the diagram.

This may make the diagram very visually messy. This operation may not be

aborted. Selecting this command more than once does not cause harm. If no

'no-forgetting' arcs need to be added no action is taken.

72

Other (01

Move to the Other Solve Operations Menu. This menu contains several less

commonly used solution operations.

View IV]
View the current graph. This command shows the graph display in normal

mode. It is useful for choosing the next node to remove.

Quit [Q]

Return to the Solve Method Menu.

A.5.8 Other Solve Operations Menu Commands in this menu follow the same

steps as in the menu above except for the View command which simply displays the

graph and waits for the user to hit any key.

Integrate [I]

Integrate out one chance node into another. This operation integrates one

chance node's probability distribution into that of another. This is not a

standard solution operation. The graphics display is put up and the user is

prompted to select first the predecessor and then the successor nodes. After

the operation the modified graph is displayed. The ESC key may be used to

abort the operation during node selection.

reVeal IV]

Reveal the outcome of a chance node. This operation reveals the outcome of

a chance node by changing the node into a deterministic node with a constant

outcome of the revealed outcome value. The graph is put up and the user is

prompted to select the chance node to reveal. The user then enters the outcome

which is revealed and the node is transformed into a deterministic node with

that value as its constant function. After the operation the modified graph is

displayed. The ESC key may be used to abort the operation during the node

selection.

73

Xform [XI

Transform a deterministic node into a chance node. This operation takes a

deterministic node and transforms it into a chance node with a probability dis-

tribution consisting of probability of 1.0 for the outcome produced by a given

combination of predecessor outcomes and 0.0 for all other possible outcomes.

This operation is affected by value rounding and outcome limiting as discussed

in Section A.6. This operation must be done on all deterministic nodes not re-

moved by algebraic combination before solution of the diagram can begin. The

graphics display is put up and the user is prompted to select the deterministic

node to transform. After the operation the modified graph is displayed. The

ESC key may be use to abort the operation during node selection.

Barren [B]

Remove a barren node from the diagram. If a node is barren (it has no suc-

cessors) it has no effect on the expected value of the model and may therefore

* * be removed from the diagram. This operation is needed before the diagram

is solved and may be needed during solution after a decision node is removed.

The graphics display is put up and the user prompted for the node to remove.

If the node is barren it is removed. If not, the user is given an error message.

The ESC key may be used to abort the operation during node selection.

Quit [Q)
Return to the Solve Operations Menu. This command is not often needed as

the program will automatically return to the Solve Operations Menu after an

Other Solve Operations command is executed.

A.5.9 Files Menu The commands in this menu are in two groups. First, the

storage commands Read and Write deal with influence diagram storage files. These

files contain the information necessary to recreate a diagram from scratch. They

are ASCII text, but are designed for easy storage and retrieval rather than human

reading. These files should not be tampered with since to do so can cause strange

74

and not always obvious errors in AFids operations. The second group of commands

deal with the transcript generated by AFids which records all significant transactions

and operations during program execution. Three output 'devices' are provided: a

disk file, the text display screen, and the printer (the DOS PRT device). Any

combination of these devices may be active and receive transcript information. Note,

if a transcript file is not specified at the initial preferences screen it is not available

for output. The default settings for the three transcript devices is: transcript disk

file ON, screen output ON, printer output OFF.

Read [R]

Read in an AFids diagram file. Nodes read in are added to the current dia-

gram. No checking is currently done for duplicate names or locations. This

command is most useful for reading in entire diagrams but may be used for

partial diagrams. An error will result if a file containing a value node is read

into a diagram already containing a value node. A data entry screen is put up

for the user to enter the path and file name of the input file. The ESC key

aborts the operation.

Write [W]

Store a diagram to disk. This operation takes the current diagram and stores

it to a disk file. Partially solved diagrams may be stored. The output file is

in ASCII text but is not designed for human reading. A data entry screen is

used to get the path and file name for the storage file. The ESC key aborts

the operation.

Transcript [T]

Toggle the transcript file on or off. The transcript file records all operations

done on the diagram. If a transcript file was opened at the initial screen se-

lecting this command will prevent data from being written to it. Selecting this

command when writing is disabled will enable it again. The user is prompted

75

to verify what the effect on the transcript file will be. The ESC key may be

used to abort.

Screen-echo [S]

Toggle the echo of transcript data to the screen. As above selecting this com-

mand will either enable or disable writing of transcript data to the display

screen. The user is prompted to verify what the effect will be. The ESC key

may be used to abort.

Printer-echo [P]

Toggle the output of transcript data on the printer. As above selecting this

command will either enable of disable writing of transcript data to the DOS

PRT: device. If no printer is connected the program will hang the first time

transcript data is written. The user is prompted to verify what the effect will

be. The ESC key may be used to abort.

two Quit [Q]

B Return to the Main Menu.

A.5.10 Output Menu This menu contains the primary commands for record-

ing the state of the diagram. The Graph command will dump the current graphic

display to an Epson compatible printer using any of the six Epson graphic modes.

An option for overstrike printing will produce a nicer looking printout but will in-

crease the printing time. The other commands in this menu deal with a text listing

of various nodes. All the data AFids has on a given node is di'played in a nice format

to the active transcript output devices.

Graph [G]

Print the graphic display. The current graphic display is printed on the Epson

compatible printer connected to the PRT: device. The user is prompted for the

graphic mode for the printout and whether or not to do double pass printing.

Several printouts may be required to print the entire diagram if it does not

76

fit on one display screen. The ESC key may be used to abort before printing

starts.

Diagram (D]

List the entire diagram to the active output devices. The nodes and their data

elements are listed to the active combination of screen, transcript file, and

printer. This output is formatted for easy reading by the user. This file can

not be read in with the Files Menu 'Read' command. When this command

is selected the diagram is listed if screen output is active the listing is paused

after 20 lines to allow the user to read the output. This command can not be

aborted.

Active [A]

List only active (non-removed) nodes. Similar to above but only lists nodes

which are currently in the diagram. Removed nodes such as decision nodes re-

moved by maximization are not displayed. This command can not be aborted.

0i0 Removed [R]

List only removed nodes. Similar to above but only lists node which have been

removed from the diagram. This command can not be aborted.

Nodes [N]

List a user defined set of nodes. Similar to above but a user selected set of

nodes is listed. The graphics display is put up and the user is prompted to

select a set of nodes to list. The ESC key is used to end the node selection

process. The nodes are then listed to the active output devices. Hitting ESC

before any nodes are selected will abort the command.

Quit [Q]

Return to the Main Menu.

A.5.11 Graph View Menu Commands in this menu allow the user to view

the graph in normal and zoom mode and to chance the center point of the normal

77

display.

Normal [N]

View the current graph in normal display mode. This mode shows only 1/ 9th

of the entire graphics work space. Hit any key to return to the menu.

Zoom [Z]
View the current graph in 'zoom out' display mode. This mode shows the entire

graph work space with all diagram objects drawn at 1/ 3 d size. The nodes are

shown in their correct shapes but are not labeled, nor are the arrowheads put

on the arcs. Hit any key to return to the menu.

Center [C]

Change the center point of the normal graphics mode display. The zoomed

display is put up and a white square is drawn to show the location of the

current graphic display. The graphics cursor is placed at the center of the
square. The user may move the graphics cursor to locate the new center for
the normal mode display. Hitting ENTER will cause the square to be redrawn

around the current cursor location. The user may adjust the location as often
as needed. The ESC key locks in the new normal display center point and

returns to the menu.

Quit (Q]
Return to the Main Menu.

A.6 Function Evaluation Subsystem

One of the key features of the AFids package is its ability to handle deter-

ministic nodes and their functions. The AFids package contains the most extensive
set of mathematical, logical, financial, and list processing functions of any influence

diagram software available. This section will describe the features available for pro-

78

cessing deterministic functions and for managing the conversion from deterministic

to chance node.

A.6.1 Function Format AFids functions are strings of numbers, node names,

and function names. A typical function might look like:

SUM(chancel, 5*decisionl, det3) * 88.5 * SIN(det4)

Where chancel, decisionl, and det3/4 are the names of nodes in the diagram and

SUM and SIN are function names. \When the function is evaluated the various

outcome values for the nodes are substituted into the function wherever their name

appears. Functions are entered and edited in a data entry screen. The function

data entry screen consists of three fields in which strings may be entered. The fields

are not linked so text will not wrap from one to the other if pushed by inserting

text. When the screen is accepted the three fields are appended together to form

the final function string. A limitation of Turbo Pascal requires that strings be < 255

i characters. AFids function strings are limited to about 230 characters to allow room

for substituting the node outcome values into the function string during evaluation.

Node names may not be the same as function names. There are no other

restrictions on node names. They may contain any character that may be typed from

the keyboard including spaces and punctuation symbols. In general short names of

"5 characters represent a good compromise between a mnemonic description and

the space occupied by the node in the graph, as longer names produce bigger nodes.

The function evaluation subroutine will be confused by duplicate names and will not

evaluate the function correctly. The word 'pi' is also reserved and returns the value

of 7r to the maximum accuracy of the computer.

The word *ALL* may be specified in a function requiring a list of arguments.

When the function is evaluated the *ALL* term will be replaced with a list of all

of the node's predecessors. This is useful when entering a function before all of the

predecessors are known or allowing diagram modification without requiring that the

79

function be changed. The expression SUM(*ALL*) or PROD(*ALL*) is commonly

seen in value functions where dynamic programming will be done.

A.6.2 Value Rounding To reduce the size of the probability array when con-

verting a deterministic node to a chance node, AFids will create only one entry in the

outcome table for duplicate outcome values. Normally round off errors will prevent

values from being exactly equal. To manage this problem AFids introduces the con-

cept of a round-off value. This value is optionally appended to a function string whpn

it is created. For example: chancel / decision4 + det2 [3.0]. The term [3.0] in the

function is the round off value. The expression inside the square brackets [] can be

either a constant or an arithmatic expression containing only constants. References

to node names are not When a round-off value is specified for a function its outcomes

are restricted to integer multiples of that value. For example, in the function above

the outcomes would be rounded to ... ,-3,0,3,6,.... This feature allows the user to

control the precision of the function calculations. Since only integer multiples of the

round-off value are produced by the function the chances that outcome values will

be equal, and hence produce a single entry in the outcome table, is increased. This

feature is also useful for getting outcomes to convenient precision such as ccnts with

a round-off value of [.01]. or to the nearest integer value with [1.0].

While round-off values may reduce the size of the outcome space for a deter-

ministic node, they should be used with care especially when the exact value of a

number is important. Special care should be taken when combining several rounded

values together as the accumulated round-off error may exceed the magnitude of the

answer. Finally, when processing chains of deterministic nodes where the outcomes

of one node depend on the outcomes of another deterministic node combinatorial

explosion in outcomes can be a problem. Using excessively large round-off values

to cure this problem is not recommended as the answer will have little meaning.

The recommended method for handling deterministic chains is discussed in the next

section.

80

A.6.3 Outcome Limiting Often in dynamic programming type problems the

influence diagram formulation will have a series of deterministic nodes influencing

each other in a chain-like manner. Combinatorial explosion in the outcomes of

these deterministic nodes can take place because the number of outcomes a given

node has is the product of the number of outcomes of all of its predecessors. It

is easy to see that a chain of deterministic nodes can quickly require astronomical

amounts of storage not to mention processing time. To eliminate this problem AFids

introduces the concept of outcome limiting for deterministic, subvalue, and value

nodes (the most common application will be to deterministic nodes). Outcome

limiting the combinatorial explosion problem of deterministic node chains by only

allowing deterministic nodes to have a fixed number of outcomes. Thus, the number

of outcomes a deterministic node has is no longer dependent on the number of

predecessor outcome combinations but is fixed to some reasonable number before

the outcomes are calculated.

I In the AFids system when a node is outcome limited the following steps are

followed when creating the outcome table:

1. All of the node's possible outcomes are calculated (i.e. one outcome for each

combination of predecessor outcomes).

2. The high and low values are used to determine the range of outcome values.

3. The range is divided into the previously set number of outcome values and

each raw outcome is rounded to the nearest of the calculated outcome values.

Then when the deterministic node is converted to a chance node, both the outcome

table and probability array are reduced in size because only one entry is created for

duplicate values.

A.6.4 Available Functions The AFids package has a large number of included

functions for use in deterministic, subvalue, and value node functions. This section

81

will list the functions, their arguments,a brief description, and an example. Special-

ized functions may be added to AFids by inserting the appropriate subroutine in the

function evaluation procedure in the CALC unit and re- compiling the program.

A.6.4.1 Arithmatic Operators

+ Adds two quantities. chance + detl + 1.253

- Either negation or subtraction. -chancel or chance2 - dct5

* Multiplies two quantities. chancel * det4

/ Divides two quantities. Divide by zero is trapped but not in a nice way. (chance3+

det2)/det6

Raises the first quantity to the second quantity power. Uses xv = e L" so T must

be > 0.0. detl ^ (chance3/decision2)

A.6.-4.2 Logical Operators

& Logical AND of two quantities. Returns 1.0 if both are non-zero and 0.0 if either

or both are 0.0. & has the same priority as * and / . chance3 & det2

I Logical OR of two quantities. Returns 1.0 if either are non-zero and 0.0 if both

are 0.0. 1 has the same priority as + and -. chance3 I det2 * decisionl

, > Logical EQUAL (NOT EQUAL) of two quantities. Returns 1.0 if values are

ex.ctly equal (not equal) 0.0 otherwise. - and <> are lower priority than +

or -. (chancel = chance2)

>, >- Logical GREATER (or GREATER OR EQUAL) of two quantities. Returns

1.0 if the first is larger (larger or equal) than the second. (det4 >- det3)

<- <= Logical LESS (or LESS OR EQUAL) of two quantities. Returns 1.0 if the

first is less (less or equal) than the second. det4 < (3*2)

82

A.6.4.3 Mathematical Functions In this section the function and its

arguments appear in square brackets. These brackets are not entered in the function.

The term 'expr' is used to represent a constant or a function of constants and node

names.

ABS [ABS(expr)] Absolute Value of a quantity. ABS(chancel)

SQRT [SQRT(expr)] Square Root of a quantity. SQRT(det2 * det3)

SQR [SQR(expr)] Squares a quantity. SQR(99.35+det3)

SIN [SIN(expr)] Returns the sine of an angle in radians. SIN(PI/6)

COS [COS(expr)] Returns the cosine of an angle in radians. COS(-det4)

TAN [TAN(expr)] Returns the tangent of an angle in radians. SIN(chancel) /

COS(chancel) = TAN(chancel)

ATAN [ATAN(expr)] Returns the arctangent of an angle in radians. ATAN(det2 +

det4)

LN [LN(expr)] Returns the natural logarithm of a quantity. The argument must be

> 0.0. LN(SQRT(chance2))

EXP [EXP(expr)] Raises e to the argument power. EXP(chance4/det3)

FACT [FACT(expr)] Returns the factorial of the argument. The argument is

rounded to the nearest integer. Care must be taken not to exceed the maximum

value for a real number (1E+38 or 1E+408 for AFids87). FACT(5)

RAND [RAND or RAND(expr)] Returns a random number between 0.0 and 1.0 or

between 0.0 and expr. RAND(chance3 + 5)

MOD [MOD(exprl, expr2)] Returns the integer remainder of experl / expr2. MOD-

(5,3)

83

A.6.4.4 Financial Functions This sections describes the AFids finan-

cial functions. No attempt is made to explain the functions beyond their format and

arguments. Any of the arguments may be a constant or function.

CV [CV(principal, rate, periods)] Computes the compounded value of a principal.

PV [PV(payment, rate, periods)] Computes the present value of a series of payments.

FV [FV(payment, rate, periods)] Computes the future value of a series of payments.

PMT [PMT(principal, rate, periods)] Computes the required payments to repay

principal in periods payments.

RATE (RATE(future value, present value, periods)] Computes the necessary rate

for present value to grow to future value in periods compounding periods.

CTERM [CTERM(rate, future value, present value)] Computes the number of com-

pounding periods required for present value to grow into future value at rate

interest rate.

a TERM [TERM(payment, rate, future value)] Computes the number of payment

periods for an investment to reach future value.

DDB [DDB(cost, salvage, life, period)] Computes the double-declining-balance de-

preciation allowance for an item for period period in life.

SLD [SLD(cost, salvage, live)] Computes the straight-line depreciation allowance

of an item for one period.

SYD [SYD(cost, salvage, life, period)] Computes the sum-of-the- years-digits de-

preciation allowance of an item for period period.

A.6.4.5 List Functions The functions listed in this section deal with a

list of arguments of any length. The arguments list has the form argi, arg2, arg3,

.... The arguments may be a constant or a function. Caution, nesting these list

functions more than about three deep can cause a stack overflow condition which

will abort the program.

84

AVG [AVG(list)] Computes the average of the values in the list.

CHOOSE [CHlOOSE(control, list)] Returns the item in the list specified by control.

The first item in the list is numbered 0.

COUNT [COUNT(list)] Returns the number of items in the list.

MAX [MAX(list)] Returns the value of the largest item in the list.

MIN [MIN(list)] Returns the value of the smallest item in the list.

STD [STD(list)] Returns the sample standard deviation for the list.

VAR [VAR(list)] Returns the sample variance for the list.

SUM [SUM(list)] Returns the sum of the list items. This function identifies a

separable function for use in value node separation.

PROD [PROD(list)] Returns the product of the list items. This function identifies

a separable function for use in value node separation.

A.6.4.6 Miscellaneous Functions This section contains a description of

the remaining AFAds functions.

IF [IF(condition, true expr, false expr)J This function will return the value of true

ezpr if the condition expression evaluates to a non-zero value. The value of

false expr will be returned otherwise. Any expression may be used for the

condition but the logical operators above were the intended way to produce a

true/false condition.

UTIL [UTIL(value, risk tolerance, util= 1.0 point)] Computes the standard decision

analysis utility function which is an exponential function with UTIL at 0.0

= 0.0 and UTIL at the util=1.0 point = 1.0. This function maps one value

measure into another.

VAL [VAL(util, risk tolerance, util=1.0 point)] Computes the inverse of the UTIL

function. Useful for converting utilities back to the original value measure.

85

Appendix B. AFids Program Data Structures

This appendix contains the Pascal source format of the AFids data structures

used to represent the data items making up an influence diagram.

To facilitate logical organization the Pascal 'record' structure was used exten-

sively. This allowed structures composed of several parts to be handled as a single

unit. Note, none of the structures given here are allocated at compile time, rather

they are allocated from the free memory 'heap' as needed at run time. This allows

AFids to have no fixed limits on sizes or numbers of objects.

The primary structure in the program is that for an influence diagram node.

id-.node =record

name :name-.string; {string of length 20}

removed :boolean;

x..coord :integer;

y..coor d :integer;

prods :node-.list.ptr;

succs :node-ist-ptr;

next :id..node-.ptr;

node-.type :node-.types;

flouts :integer;

outcomes :outcome-.array-.ptr;

opt..alts :outcome.array-.ptr; f for a decision node}

figivens :integer;

givens :given-.array-.ptr;

nprobs :integer;

prob.dist prob.array-ptr;

func-str-.ptr :functin-.string-.ptr

86

end;

The structures defining the components of the id-node will now

be presented.

idnode.ptr - -id.node;

node.list.ptr - -node-list;

node.list - record

node-ptr : id-node-ptr;

next : node.list-ptr;

end;

node-types - (chance, decision, deterministic, subvalue, value);

outcomearray-ptr ^ outcome-array;

outcome - record

name result-string; { string to hold number }

value : real (either real or IEEE double precision depending

on the AFids version }

end;

outcome.array - array CO. .3000) of outcome; { limited by Turbo Pascal }

givenarrayptr - -given-array;

given a record

node-name : namestring;

nouts integer;

87

cur-out : integer;

outs : out come-array-ptr

end;

given-array - array (0..2000) of given;

prob.array -array[O..10900) of real;

prob.array.ptr - ^probarray;

The nodes are made up of these parts created at run time. The arcs in the diagram

are represented by entries in the 'preds' and 'succs' linked lists. Note, the pred and

succ lists are complementary, that is if a node appears in a pred list it will have the

node in whose list it appears in its succ list.

88

Bibliography

1. Burwell, Capt Thomas M. PERFORMA A Personal Influence Diagram System
for Decision Analysis. MS thesis, AFIT/GOR/MA/87D 87-2. School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1987.

2. Dreyfus, Stuart E. and Averill M. Law. The Art and Theory of Dynamic Pro-
gramming, Academic Press, New York, 1977.

3. Howard R. A. and J.E. Matheson. Influence Diagrams, The Principles and Ap-
plications of Decision Analysis, R.A. Howard and J.E. Matheson, Eds. Menlo
Park CA: Strategic Decisions Group, 1984, pp. 719-762.

4. Kenley, C.R. Influence Diagram Models With Continuous Variables. PhD dis-
sertation. Stanford University, Menlo Park CA, 1986.

5. Owen, Daniel L. "The Use of Influence Diagrams in Structuring Complex De-
cision Problems", The Principles and Applications of Decision Analysis, R.A.
Howard and J.E. Matheson, Eds. Menlo Park CA: Strategic Decisions Group,
1984, pp. 765-771.

6. Shachter, Ross D. "Evaluating Influence Diagrams", Operations Research, 34:
871-882 (November-December 1986).

£ ~ 7. Shachter, Ross D. and Joseph A. Tatman. "Dynamic Programming and Influ-
ence Diagrams", Submitted to IEEE Transactions on Systems, Man and Cy-
bernetics, November 1987.

8. Tatman, Joseph A. Decision Processes in Influence Diagrams: Formulation and
Analysis, Ph.D. dissertation, Stanford University, Menlo Park CA, 1986.

9. Tatman, Joseph A. Influence Diagrams: A Tutorial, Class handout distributed
in Math 5.70, Decision Analysis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, November 1987.

10. Turbo Pascal Version 4.0 Reference Alanual. Borland International, Scotts Val-
ley, CA, 1988.

89

V

C apt ain, Christopher T. Baron He

graduated Lomn high school at Turnwater Hligh School in TuuaeWashington in

June of 19Th He then attecnded the U3ni,.ersity of Wan tnrecei ving a Bachelor ot-

3Mence degree in Aeronautics and Astronautics in June of .1983. 'Upon graduation he

was amor(ded a USAF reserve commiss2
5ion throug-h- AFROTC. lie w~as thien ~nn

(D the Foreign Tech nology Divis~ion, Wright- Paltrson, AFB, Ohico and vsorked in

Ko oviet. Spacc Employment Group of the Space Systoms Division un1til cnter~flg

graduate Opyrations Research program i the School of Enginering, Air Forcce

lute of Technology, in June of 1987.

90

UNCLASSIMED
SECURITY CLSSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OBNo. rve

Ia. REPORT SECURITY CLASSIFICATION 1b. 4 ICTVE MARKINGS

s. SECURITY CLASSiFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution Unlicited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

*,AFIT/GOWW88D-1
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If appicakbe)

Sch~o of AkiTr x AF
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AUl)
Wright-Patterson AFB,, O1 45433

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
: ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO jACCESSION NO.

11. TITLE (Include Security Classification)

INFUIJE DIAGRAMS: Abvf~bTE2 SOUTIN WITH DYNAMIC PROGRAMMING

12. PERSONAL AUTHOR(S)
christopher T. Baron, B.S. Captain, USAF

kk3"a. TYPE OF REPORT 1 3b. TIME COVERED 14. DATE OF REPORT (Year, Month, Oay) iS. PAGE COUNT
MS)Thesis I FROM TO_ 1988 December 98

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Influence Diagrams-, Dynamicr PrOgralTm.ng, Decision Analysis

04 Decision Theory

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Joseph A. Tatman, Captain, USAF
Assistant Professor, Dept. of Mathematics and

Computer Science

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS LJSI'IED

-2a. NAME OF RESPONSIBLE INDIVIDUAL, 22fPH (c eaCode) 22c- OFFICE SYMBOL
Joseph Captain, U AIT/NC

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCIASSIFIE'

19. Abstract
The major goals of this thesis research were to develop a user friendly software
package for processing influence diagrams, and to implement in software the extensions
necessary for dynamic programning without special action or knowledge on the part of
the user. The final goal was to demonstrate the efficiency of the dynamic programming
techniques by applying them to several example problem.

A software package, AFids (AFIT influence diagram system) was developed. The system is

capable of performance equivalent to the current state of the art in commercial influence
diagram software. AFids incorporates the basic influence diagram operations, the
separable value function extensions, and an algorithm to automatically solve any properly
formed influence diagram. Separation of the value function for dynamic programming
is automatic and requires no action or special knowledge on the part of the user beyond
representing the value function explicitly as a sum or product. The software uses menus,
data entry screens, and graphics to provide an effective and friendly user interface.
Several extensions to influence diagram theory were implemented in the AFids package
including the concepts of value rounding and outcome limiting to control the cmbinatorial
explosion encountered when processing chains of deterministic nodes. The systen is cost
free and available in either source or compiled form for government users. There are no
restrictions on use or distribution except for camuercial use. The software runs on MS-
DOS compatible microcomputers and was programmed in Turbo Pascal. A users manual, and
a description of the AFids data structures are provided for future users and researchers.

Two application examples are presented, demnstrating both the efficiency of the dynamic
programming features and the limitations of influence diagrams in modeling problems with
significant functional relations.

AFids provides a solid capability for processing influence diagrams throughout the decision'
analysis cycle, fra formulation to solution. Inclusion of the separable value function
and deterministic processing node functions represent advancements in influence diagram
software and allow previously ccputationally intractable problems to be solved via
influence diagrams. Finally, AFids will become the standard influence dieagram software
for the decision analysis curriculum at AFIT.

